Cerebral blood volume

Last updated

Cerebral blood volume is the blood volume in a given amount of brain tissue. [1]

Contents

Pathophysiology

The typical human adult's skull contains approximately 1500 grams of the brain (including gray matter and white matter), 100-130 milliliters of blood, and 75 milliliters of cerebrospinal fluid. About 15% of the blood volume is present in the arteries, 40% in the veins, and 45% in the nerve tissue and capillaries. [2]

There is a difference between the cerebral blood volume of gray and white matter. The cerebral blood volume value of gray matter is about 3.5 +/- 0.4 ml/100g, and the white matter is about 1.7 +/- 0.4 ml/100g. The gray matter is nearly twice that of white matter. [3] In both white and gray matter, cerebral blood volume decreases by about 0.50% per year with increasing age. [4] Intracranial hematoma and Intracerebral hemorrhage (ICH) will cause an increase in cerebral blood volume. [5] Ischemic stroke will cause a substantial reduction in cerebral blood volume. [6]

Measurement methods

Schematic representation of a Magnetic Resonance Mrfm.png
Schematic representation of a Magnetic Resonance

Magnetic resonance imaging

The cerebral blood volume maps can be calculated by dynamic magnetic resonance image set obtained by echo planar imaging after intravenous injection of thiol contrast agent. [7] Planar imaging techniques or single high-speed shots provide the necessary resolution for contrast agents to display rapid brain blood movements. [8] These magnetic resonance cerebral blood volume imaging methods can be applied to academic research of normal human brain activities and clinical studies of patients with brain tumors. [9] [10]

Ct scan cone beam Ct scan cone beam.png
Ct scan cone beam

Emission computed tomography

In vivo studies using emission computed tomography gave coefficients of variation for regional cerebral blood volume and cross-sectional cerebral blood volume over 80 minutes. [11] A clear tomographic depiction of cerebral blood volume distribution in human subjects can achieve by using emission computed tomography, which provides real-time measurements of the cerebral hemodynamic parameters. [12] Carbon monoxide administered by a single inhalation is a reliable and accurate blood tracer for measuring cerebral blood volume with emission computed tomography. [13] [14]

Synchrotron radiation computed tomography

Synchrotron Radiation Computed Tomography uses a monochromatic and parallel X-ray beam to measure the value of cerebral blood volume. It allows the sample to be placed away from the detector, thereby avoiding scattering effects. [15] This technique measures absolute contrast concentration with relatively high precision and spatial resolution. Cerebral blood volume measurements are based on methods used in dynamic computed tomography. After a large dose of iodinated contrast agent was injected into the brain tissue, the temporal change in iodine concentration was compared to changes in cerebral arterial input. It is a new method for studying hemodynamic changes in brain pathophysiology, including clinical studies of cerebrovascular diseases or brain tumors. [16]

CT perfusion

Cerebral blood volume is one of the parameters that is assessed with CT perfusion, often as part of Ischemic stroke evaluation. [17] [18]

Cerebral blood flow

Cerebral blood volume has a close and positive correlation with cerebral blood flow. Both cerebral blood volume and cerebral blood flow depend on several important parameters, including cerebrovascular resistance, intracranial pressure, and mean arterial pressure. [1] The ratio between cerebral blood flow and cerebral blood volume can be an accurate predictor of decreased cerebral perfusion pressure, thereby predicting cerebral circulation. [19] [20]

Related Research Articles

<span class="mw-page-title-main">Cerebrovascular disease</span> Condition that affects the arteries that supply the brain

Cerebrovascular disease includes a variety of medical conditions that affect the blood vessels of the brain and the cerebral circulation. Arteries supplying oxygen and nutrients to the brain are often damaged or deformed in these disorders. The most common presentation of cerebrovascular disease is an ischemic stroke or mini-stroke and sometimes a hemorrhagic stroke. Hypertension is the most important contributing risk factor for stroke and cerebrovascular diseases as it can change the structure of blood vessels and result in atherosclerosis. Atherosclerosis narrows blood vessels in the brain, resulting in decreased cerebral perfusion. Other risk factors that contribute to stroke include smoking and diabetes. Narrowed cerebral arteries can lead to ischemic stroke, but continually elevated blood pressure can also cause tearing of vessels, leading to a hemorrhagic stroke.

<span class="mw-page-title-main">Single-photon emission computed tomography</span> Nuclear medicine tomographic imaging technique

Single-photon emission computed tomography is a nuclear medicine tomographic imaging technique using gamma rays. It is very similar to conventional nuclear medicine planar imaging using a gamma camera, but is able to provide true 3D information. This information is typically presented as cross-sectional slices through the patient, but can be freely reformatted or manipulated as required.

<span class="mw-page-title-main">Cerebral edema</span> Excess accumulation of fluid (edema) in the intracellular or extracellular spaces of the brain

Cerebral edema is excess accumulation of fluid (edema) in the intracellular or extracellular spaces of the brain. This typically causes impaired nerve function, increased pressure within the skull, and can eventually lead to direct compression of brain tissue and blood vessels. Symptoms vary based on the location and extent of edema and generally include headaches, nausea, vomiting, seizures, drowsiness, visual disturbances, dizziness, and in severe cases, coma and death.

<span class="mw-page-title-main">Cerebral circulation</span> Brain blood supply

Cerebral circulation is the movement of blood through a network of cerebral arteries and veins supplying the brain. The rate of cerebral blood flow in an adult human is typically 750 milliliters per minute, or about 15% of cardiac output. Arteries deliver oxygenated blood, glucose and other nutrients to the brain. Veins carry "used or spent" blood back to the heart, to remove carbon dioxide, lactic acid, and other metabolic products. The neurovascular unit regulates cerebral blood flow so that activated neurons can be supplied with energy in the right amount and at the right time. Because the brain would quickly suffer damage from any stoppage in blood supply, the cerebral circulatory system has safeguards including autoregulation of the blood vessels. The failure of these safeguards may result in a stroke. The volume of blood in circulation is called the cerebral blood flow. Sudden intense accelerations change the gravitational forces perceived by bodies and can severely impair cerebral circulation and normal functions to the point of becoming serious life-threatening conditions.

<span class="mw-page-title-main">Perfusion</span> Passage of fluid through the circulatory or lymphatic system to an organ or tissue

Perfusion is the passage of fluid through the circulatory system or lymphatic system to an organ or a tissue, usually referring to the delivery of blood to a capillary bed in tissue. Perfusion may also refer to fixation via perfusion, used in histological studies. Perfusion is measured as the rate at which blood is delivered to tissue, or volume of blood per unit time per unit tissue mass. The SI unit is m3/(s·kg), although for human organs perfusion is typically reported in ml/min/g. The word is derived from the French verb "perfuser" meaning to "pour over or through". All animal tissues require an adequate blood supply for health and life. Poor perfusion (malperfusion), that is, ischemia, causes health problems, as seen in cardiovascular disease, including coronary artery disease, cerebrovascular disease, peripheral artery disease, and many other conditions.

<span class="mw-page-title-main">Intraparenchymal hemorrhage</span> Medical condition

Intraparenchymal hemorrhage (IPH) is one form of intracerebral bleeding in which there is bleeding within brain parenchyma. The other form is intraventricular hemorrhage (IVH).

Cerebral perfusion pressure, or CPP, is the net pressure gradient causing cerebral blood flow to the brain. It must be maintained within narrow limits because too little pressure could cause brain tissue to become ischemic, and too much could raise intracranial pressure (ICP).

<span class="mw-page-title-main">Neuroimaging</span> Set of techniques to measure and visualize aspects of the nervous system

Neuroimaging is the use of quantitative (computational) techniques to study the structure and function of the central nervous system, developed as an objective way of scientifically studying the healthy human brain in a non-invasive manner. Increasingly it is also being used for quantitative research studies of brain disease and psychiatric illness. Neuroimaging is highly multidisciplinary involving neuroscience, computer science, psychology and statistics, and is not a medical specialty. Neuroimaging is sometimes confused with neuroradiology.

Perfusion is the passage of fluid through the lymphatic system or blood vessels to an organ or a tissue. The practice of perfusion scanning is the process by which this perfusion can be observed, recorded and quantified. The term perfusion scanning encompasses a wide range of medical imaging modalities.

In pathology and anatomy the penumbra is the area surrounding an ischemic event such as thrombotic or embolic stroke. Immediately following the event, blood flow and therefore oxygen transport is reduced locally, leading to hypoxia of the cells near the location of the original insult. This can lead to hypoxic cell death (infarction) and amplify the original damage from the ischemia; however, the penumbra area may remain viable for several hours after an ischemic event due to the collateral arteries that supply the penumbral zone.

The partial volume effect can be defined as the loss of apparent activity in small objects or regions because of the limited resolution of the imaging system. It occurs in medical imaging and more generally in biological imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). If the object or region to be imaged is less than twice the full width at half maximum (FWHM) resolution in x-, y- and z-dimension of the imaging system, the resultant activity in the object or region is underestimated. A higher resolution decreases this effect, as it better resolves the tissue.

<span class="mw-page-title-main">Magnetic resonance imaging of the brain</span>

Magnetic resonance imaging of the brain uses magnetic resonance imaging (MRI) to produce high quality two-dimensional or three-dimensional images of the brain and brainstem as well as the cerebellum without the use of ionizing radiation (X-rays) or radioactive tracers.

<span class="mw-page-title-main">Brain positron emission tomography</span> Form of positron emission tomography

Brain positron emission tomography is a form of positron emission tomography (PET) that is used to measure brain metabolism and the distribution of exogenous radiolabeled chemical agents throughout the brain. PET measures emissions from radioactively labeled metabolically active chemicals that have been injected into the bloodstream. The emission data from brain PET are computer-processed to produce multi-dimensional images of the distribution of the chemicals throughout the brain.

Functional magnetic resonance spectroscopy of the brain (fMRS) uses magnetic resonance imaging (MRI) to study brain metabolism during brain activation. The data generated by fMRS usually shows spectra of resonances, instead of a brain image, as with MRI. The area under peaks in the spectrum represents relative concentrations of metabolites.

<span class="mw-page-title-main">Cerebral atherosclerosis</span> Medical condition

Cerebral atherosclerosis is a type of atherosclerosis where build-up of plaque in the blood vessels of the brain occurs. Some of the main components of the plaques are connective tissue, extracellular matrix, including collagen, proteoglycans, fibronectin, and elastic fibers; crystalline cholesterol, cholesteryl esters, and phospholipids; cells such as monocyte derived macrophages, T-lymphocytes, and smooth muscle cells. The plaque that builds up can lead to further complications such as stroke, as the plaque disrupts blood flow within the intracranial arterioles. This causes the downstream sections of the brain that would normally be supplied by the blocked artery to suffer from ischemia. Diagnosis of the disease is normally done through imaging technology such as angiograms or magnetic resonance imaging. The risk of cerebral atherosclerosis and its associated diseases appears to increase with increasing age; however there are numerous factors that can be controlled in attempt to lessen risk.

<span class="mw-page-title-main">MRI sequence</span>

An MRI sequence in magnetic resonance imaging (MRI) is a particular setting of pulse sequences and pulsed field gradients, resulting in a particular image appearance.

Arterial spin labeling (ASL), also known as arterial spin tagging, is a magnetic resonance imaging technique used to quantify cerebral blood perfusion by labelling blood water as it flows throughout the brain. ASL specifically refers to magnetic labeling of arterial blood below or in the imaging slab, without the need of gadolinium contrast. A number of ASL schemes are possible, the simplest being flow alternating inversion recovery (FAIR) which requires two acquisitions of identical parameters with the exception of the out-of-slice saturation; the difference in the two images is theoretically only from inflowing spins, and may be considered a 'perfusion map'. The ASL technique was developed by Alan P. Koretsky, Donald S. Williams, John A. Detre and John S. Leigh, Jr in 1992.

Perinatal stroke is a disease where an infant has a stroke between the 140th day of the gestation period and the 28th postpartum day, affecting up to 1 in 2300 live births. This disease is further divided into three subgroups, namely neonatal arterial ischemic stroke, neonatal cerebral sinovenous ischemic stroke, and presumed perinatal stroke. Several risk factors contribute to perinatal stroke including birth trauma, placental abruption, infections, and the mother's health. Detection and diagnosis of perinatal stroke are often delayed due to prenatal onset or inadequacy of neonatal signs and symptoms. A child may be asymptomatic in the early stages of life and may develop common signs of perinatal stroke such as seizures, poor coordination, and speech delays as they get older. Diagnostic tests such as magnetic resonance imaging, electroencephalogram, and blood tests are conducted when doctors suspect the patients have developed signs of a perinatal stroke. The prognosis of this disease is associated with the severity and the development of the symptoms. This disease can be treated by anticoagulant and anticonvulsant drugs, surgical procedures, and therapeutic hypothermia, depending on the condition of the patient.

Arterial input function (AIF), also known as a plasma input function, refers to the concentration of tracer in blood-plasma in an artery measured over time. The oldest record on PubMed shows that AIF was used by Harvey et al. in 1962 to measure the exchange of materials between red blood cells and blood plasma, and by other researchers in 1983 for positron emission tomography (PET) studies. Nowadays, kinetic analysis is performed in various medical imaging techniques, which requires an AIF as one of the inputs to the mathematical model, for example, in dynamic PET imaging, or perfusion CT, or dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).

<span class="mw-page-title-main">Jean-Claude Baron</span> French stroke researcher

Jean-Claude Baron is an Emeritus Professor of Stroke Medicine at the University of Cambridge. He is also a Fellow of the Academy of Medical Sciences. He has authored around 450 peer-reviewed articles.

References

  1. 1 2 Leenders, K. L.; Perani, D.; Lammertsma, A. A.; Heather, J. D.; Buckingham, P.; Jones, T.; Healy, M. J. R.; Gibbs, J. M.; Wise, R. J. S. (1990). "Cerebral Blood Flow, Blood Volume and Oxygen Utilization". Brain. 113 (1): 27–47. doi:10.1093/brain/113.1.27. ISSN   0006-8950. PMID   2302536.
  2. Kaisti, Kaike K.; Långsjö, Jaakko W.; Aalto, Sargo; Oikonen, Vesa; Sipilä, Hannu; Teräs, Mika; Hinkka, Susanna; Metsähonkala, Liisa; Scheinin, Harry (September 2003). "Effects of Sevoflurane, Propofol, and Adjunct Nitrous Oxide on Regional Cerebral Blood Flow, Oxygen Consumption, and Blood Volume in Humans". Anesthesiology. 99 (3): 603–613. doi:10.1097/00000542-200309000-00015. ISSN   0003-3022. PMID   12960544. S2CID   6091820.
  3. Jin, Tao; Kim, Seong-Gi (October 2008). "Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation". NeuroImage. 43 (1): 1–9. doi:10.1016/j.neuroimage.2008.06.029. ISSN   1053-8119. PMC   2579763 . PMID   18655837.
  4. Swain, R.A; Harris, A.B; Wiener, E.C; Dutka, M.V; Morris, H.D; Theien, B.E; Konda, S; Engberg, K; Lauterbur, P.C (April 2003). "Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat". Neuroscience. 117 (4): 1037–1046. doi:10.1016/s0306-4522(02)00664-4. ISSN   0306-4522. PMID   12654355. S2CID   41517027.
  5. Mandeville, Joseph B.; Marota, John J. A.; Kosofsky, Barry E.; Keltner, John R.; Weissleder, Ralph; Rosen, Bruce R.; Weisskoff, Robert M. (April 1998). "Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation". Magnetic Resonance in Medicine. 39 (4): 615–624. doi:10.1002/mrm.1910390415. ISSN   0740-3194. PMID   9543424. S2CID   23060386.
  6. Derdeyn, C. P.; Videen, T. O.; Yundt, K. D.; Fritsch, S. M.; Carpenter, D. A.; Grubb, R. L.; Powers, W. J. (2002-03-01). "Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited". Brain. 125 (3): 595–607. doi: 10.1093/brain/awf047 . ISSN   0006-8950. PMID   11872616.
  7. Blamire, A. M.; Anthony, D. C.; Rajagopalan, B.; Sibson, N. R.; Perry, V. H.; Styles, P. (2000-11-01). "Interleukin-1β-Induced Changes in Blood–Brain Barrier Permeability, Apparent Diffusion Coefficient, and Cerebral Blood Volume in the Rat Brain: A Magnetic Resonance Study". Journal of Neuroscience. 20 (21): 8153–8159. doi: 10.1523/JNEUROSCI.20-21-08153.2000 . ISSN   0270-6474. PMC   6772751 . PMID   11050138.
  8. Grandin, Cécile B.; Duprez, Thierry P.; Smith, Anne M.; Mataigne, Fréderic; Peeters, André; Oppenheim, Catherine; Cosnard, Guy (May 2001). "Usefulness of Magnetic Resonance–Derived Quantitative Measurements of Cerebral Blood Flow and Volume in Prediction of Infarct Growth in Hyperacute Stroke". Stroke. 32 (5): 1147–1153. doi:10.1161/01.str.32.5.1147. ISSN   0039-2499. PMID   11340224.
  9. Østergaard, Leif; Smith, Donald F.; Vestergaard-Poulsen, Peter; Hansen, SørenB.; Gee, Antony D.; Gjedde, Albert; Gyldensted, Carsten (April 1998). "Absolute Cerebral Blood Flow and Blood Volume Measured by Magnetic Resonance Imaging Bolus Tracking: Comparison with Positron Emission Tomography Values". Journal of Cerebral Blood Flow & Metabolism. 18 (4): 425–432. doi: 10.1097/00004647-199804000-00011 . ISSN   0271-678X. PMID   9538908.
  10. Rosen, B. R.; Belliveau, J. W.; Aronen, H. J.; Kennedy, D.; Buchbinder, B. R.; Fischman, A.; Gruber, M.; Glas, J.; Weisskoff, R. M. (December 1991). "Susceptibility contrast imaging of cerebral blood volume: Human experience". Magnetic Resonance in Medicine. 22 (2): 293–299. doi:10.1002/mrm.1910220227. ISSN   0740-3194. PMID   1812360. S2CID   33265376.
  11. Braun, H.; Ferbert, A.; Stirner, H.; Weiller, C.; Ringelstein, E. B.; Buell, U. (1988). "Combined SPECT Imaging of Regional Cerebral Blood Flow (99mTc-HexamethylPropyleneamine Oxime, HMPAO) and Blood Volume (99mTc-RBC) to Assess Regional Cerebral Perfusion Reserve in Patients with Cerebrovascular Disease". Nuklearmedizin. 27 (2): 51–56. doi:10.1055/s-0038-1629503. ISSN   0029-5566. PMID   3259313.
  12. Ito, Hiroshi; Kanno, Iwao; Ibaraki, Masanobu; Hatazawa, Jun; Miura, Shuichi (June 2003). "Changes in Human Cerebral Blood Flow and Cerebral Blood Volume during Hypercapnia and Hypocapnia Measured by Positron Emission Tomography". Journal of Cerebral Blood Flow & Metabolism. 23 (6): 665–670. doi:10.1097/01.wcb.0000067721.64998.f5. ISSN   0271-678X. PMID   12796714.
  13. Lassen, N. A. (June 1984). "Cerebral Blood Flow and Blood Volume Tomography by SPECT in Cerebrovascular Disease". Clinical Neuropharmacology. 7: S283. doi:10.1097/00002826-198406001-00256. ISSN   0362-5664.
  14. Martin, W. R. Wayne; Powers, William J.; Raichle, Marcus E. (August 1987). "Cerebral Blood Volume Measured with Inhaled C15O and Positron Emission Tomography". Journal of Cerebral Blood Flow & Metabolism. 7 (4): 421–426. doi: 10.1038/jcbfm.1987.85 . ISSN   0271-678X. PMID   3497162.
  15. Adam, Jean-Fran??ois; Elleaume, H??l??ne; Le Duc, G??raldine; Corde, St??phanie; Charvet, Anne-Marie; Tropr??s, Ir??ne; Le Bas, Jean-Fran??ois; Est??ve, Fran??ois (April 2003). "Absolute Cerebral Blood Volume and Blood Flow Measurements Based on Synchrotron Radiation Quantitative Computed Tomography". Journal of Cerebral Blood Flow & Metabolism. 23 (4): 499–512. doi:10.1097/00004647-200304000-00014. ISSN   0271-678X. PMID   12679727.
  16. Sakai, Fumihiko; Nakazawa, Keiji; Tazaki, Yoshiaki; Ishii, Katsumi; Hino, Hidetada; Igarashi, Hisaka; Kanda, Tadashi (June 1985). "Regional Cerebral Blood Volume and Hematocrit Measured in Normal Human Volunteers by Single-Photon Emission Computed Tomography". Journal of Cerebral Blood Flow & Metabolism. 5 (2): 207–213. doi: 10.1038/jcbfm.1985.27 . ISSN   0271-678X. PMID   3921557.
  17. Demeestere, Jelle; Wouters, Anke; Christensen, Soren; Lemmens, Robin; Lansberg, Maarten G. (March 2020). "Review of Perfusion Imaging in Acute Ischemic Stroke: From Time to Tissue". Stroke. 51 (3): 1017–1024. doi: 10.1161/STROKEAHA.119.028337 . ISSN   1524-4628. PMID   32008460.
  18. Konstas, A. A.; Goldmakher, G. V.; Lee, T.-Y.; Lev, M. H. (April 2009). "Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: Theoretic basis". AJNR. American Journal of Neuroradiology. 30 (4): 662–668. doi:10.3174/ajnr.A1487. ISSN   1936-959X. PMC   7051780 . PMID   19270105.
  19. Grubb, Robert L.; Raichle, Marcus E.; Eichling, John O.; Ter-Pogossian, Michel M. (September 1974). "The Effects of Changes in Pa CO 2 Cerebral Blood Volume, Blood Flow, and Vascular Mean Transit Time". Stroke. 5 (5): 630–639. doi: 10.1161/01.str.5.5.630 . ISSN   0039-2499. PMID   4472361.
  20. Todd, Nicholas V.; Picozzi, Piero; Crockard, H. Alan (June 1986). "Quantitative Measurement of Cerebral Blood Flow and Cerebral Blood Volume after Cerebral Ischaemia". Journal of Cerebral Blood Flow & Metabolism. 6 (3): 338–341. doi: 10.1038/jcbfm.1986.57 . ISSN   0271-678X. PMID   3711160.