Chelsea filter

Last updated

In gemmology, a Chelsea filter is a dichromatic optical filter used for identifying coloured stones.

Dichroism

In optics, a dichroic material is either one which causes visible light to be split up into distinct beams of different wavelengths (colours), or one in which light rays having different polarizations are absorbed by different amounts.

Optical filter device that selectively transmits light of certain wavelengths

An optical filter is a device that selectively transmits light of different wavelengths, usually implemented as a glass plane or plastic device in the optical path, which are either dyed in the bulk or have interference coatings. The optical properties of filters are completely described by their frequency response, which specifies how the magnitude and phase of each frequency component of an incoming signal is modified by the filter.

Contents

History

The "chelsea" filter was originally devised by Anderson and Payne in 1934 of the Gem testing Laboratory of the London Chamber of Commerce & Industry. The filter was devised with the collaboration of gemmology students of the Chelsea College of Science and Technology where Basil Anderson was an instructor for the Gemmological Association of Great Britain. Since this filter allows transmission of both deep-red wavelengths around 690 nanometres and yellow-green wavelengths, around 570 nanometres, that matched emerald's emission and absorption characteristics, this filter was initially recommended to assist the discrimination between natural emerald and its simulants such as green glass, tourmaline, peridot, etc. This discrimination is possible because chromium (containing iron) and vanadium-free emeralds emit a red fluorescence when illuminated by white light that also has a content of ultraviolet wavelengths.

The London Chamber of Commerce & Industry (LCCI) was established on 25 July 1881 at Mansion House in the City of London with 130 members. It represented the London metropolis.

Chelsea College of Science and Technology former college in London

Chelsea College of Science and Technology was established as a College of Advanced Technology on a single site on the corner of Manresa Road and King's Road, Chelsea, London SW3, as part of the University of London in 1966 and was granted its Royal Charter in 1971 at which time it was renamed Chelsea College. In 1985, it merged with King's College London.

The Gemmological Association of Great Britain (Gem-A) is an international gemmology education and qualifications body based in the United Kingdom.

Synthetic emeralds were commercially introduced around 1940. These produce the same pink-red response as some emeralds through the Chelsea filter. However, although this filter is unable to predictably discriminate between natural and synthetic emerald, it has been subsequently found capable of distinguishing aquamarine, blue topaz, and their blue synthetic spinel simulants, because unlike natural gemstones, blue cobalt-containing synthetic spinels emit a red fluorescence under white light.

Spinel spinel, oxide mineral

Spinel is the magnesium aluminium member of the larger spinel group of minerals. It has the formula MgAl2O4 in the cubic crystal system. Its name comes from Latin "spina" (arrow).

Cobalt Chemical element with atomic number 27

Cobalt is a chemical element with symbol Co and atomic number 27. Like nickel, cobalt is found in the Earth's crust only in chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, produced by reductive smelting, is a hard, lustrous, silver-gray metal.

Chelsea Colour Filter is a UK Trademark held by The Gemmological Association of Great Britain (UK Trademark Registration No. 1473951).

Use

Hold the filter an inch or two from the eye. Light the stone with a strong incandescent light bulb or torch, not LED. The stone may appear to change colour. The filter must be held near to the eye but there is no need to hold the filter close to the stone, even items in showcases can be examined providing they are lit by strong lights.

Chelsea Filters were also used to help separate aquamarine and natural zircon from synthetic flame-fusion spinel (used extensively in "birthstone" jewelry), as both of the former absorb the red portion of the spectrum and the synthetic spinel did not. [1]

See also

Related Research Articles

Beryl gemstone: cyclosilicate

Beryl ( BERR-əl) is a mineral composed of beryllium aluminium cyclosilicate with the chemical formula Be3Al2Si6O18. Well-known varieties of beryl include emerald and aquamarine. Naturally occurring, hexagonal crystals of beryl can be up to several meters in size, but terminated crystals are relatively rare. Pure beryl is colorless, but it is frequently tinted by impurities; possible colors are green, blue, yellow, red (the rarest), and white. Beryl is also an ore source of beryllium.

Emerald green gemstone, a beryl variety

Emerald is a gemstone and a variety of the mineral beryl (Be3Al2(SiO3)6) colored green by trace amounts of chromium and sometimes vanadium. Beryl has a hardness of 7.5–8 on the Mohs scale. Most emeralds are highly included, so their toughness (resistance to breakage) is classified as generally poor. Emerald is a cyclosilicate.

Fluorescence emission of light by a substance that has absorbed light or other electromagnetic radiation

Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore lower energy, than the absorbed radiation. The most striking example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the spectrum, and thus invisible to the human eye, while the emitted light is in the visible region, which gives the fluorescent substance a distinct color that can be seen only when exposed to UV light. Fluorescent materials cease to glow nearly immediately when the radiation source stops, unlike phosphorescent materials, which continue to emit light for some time after.

Gemstone Piece of mineral crystal used to make jewelry

A gemstone is a piece of mineral crystal which, in cut and polished form, is used to make jewelry or other adornments. However, certain rocks and occasionally organic materials that are not minerals are also used for jewelry and are therefore often considered to be gemstones as well. Most gemstones are hard, but some soft minerals are used in jewelry because of their luster or other physical properties that have aesthetic value. Rarity is another characteristic that lends value to a gemstone.

Sapphire gemstone, colored corundum variety (but red ones are named ruby, violet ones oriental amethyst)

Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide (α-Al2O3) with trace amounts of elements such as iron, titanium, chromium, copper, or magnesium. It is typically blue, but natural "fancy" sapphires also occur in yellow, purple, orange, and green colors; "parti sapphires" show two or more colors. The only color corundum stone that the term sapphire is not used for is red, which is called a ruby. Pink colored corundum may be either classified as ruby or sapphire depending on locale. Commonly, natural sapphires are cut and polished into gemstones and worn in jewelry. They also may be created synthetically in laboratories for industrial or decorative purposes in large crystal boules. Because of the remarkable hardness of sapphires – 9 on the Mohs scale (the third hardest mineral, after diamond at 10 and moissanite at 9.5) – sapphires are also used in some non-ornamental applications, such as infrared optical components, high-durability windows, wristwatch crystals and movement bearings, and very thin electronic wafers, which are used as the insulating substrates of very special-purpose solid-state electronics (especially integrated circuits and GaN-based LEDs).

Ruby variety of corundum, mineral, gemstone

A ruby is a pink to blood-red colored gemstone, a variety of the mineral corundum. Other varieties of gem-quality corundum are called sapphires. Ruby is one of the traditional cardinal gems, together with amethyst, sapphire, emerald, and diamond. The word ruby comes from ruber, Latin for red. The color of a ruby is due to the element chromium.

Fluorite mineral, calcium fluoride

Fluorite (also called fluorspar) is the mineral form of calcium fluoride, CaF2. It belongs to the halide minerals. It crystallizes in isometric cubic habit, although octahedral and more complex isometric forms are not uncommon.

Chrysoberyl oxide mineral

The mineral or gemstone chrysoberyl is an aluminate of beryllium with the formula BeAl2O4. The name chrysoberyl is derived from the Greek words χρυσός chrysos and βήρυλλος beryllos, meaning "a gold-white spar". Despite the similarity of their names, chrysoberyl and beryl are two completely different gemstones, although they both contain beryllium. Chrysoberyl is the third-hardest frequently encountered natural gemstone and lies at 8.5 on the Mohs scale of mineral hardness, between corundum (9) and topaz (8).

Lustre or luster is the way light interacts with the surface of a crystal, rock, or mineral. The word traces its origins back to the Latin lux, meaning "light", and generally implies radiance, gloss, or brilliance.

Gemology Science dealing with natural and artificial gemstone materials

Gemology or gemmology is the science dealing with natural and artificial gemstone materials. It is considered a geoscience and a branch of mineralogy. Some jewelers are academically trained gemologists and are qualified to identify and evaluate gems.

Blacklight

A blacklight, also referred to as a UV-A light, Wood's lamp, or ultraviolet light, is a lamp that emits long-wave (UV-A) ultraviolet light and very little visible light.

Fluorescence spectroscopy type of electromagnetic spectroscopy

Fluorescence spectroscopy is a type of electromagnetic spectroscopy that analyzes fluorescence from a sample. It involves using a beam of light, usually ultraviolet light, that excites the electrons in molecules of certain compounds and causes them to emit light; typically, but not necessarily, visible light. A complementary technique is absorption spectroscopy. In the special case of single molecule fluorescence spectroscopy, intensity fluctuations from the emitted light are measured from either single fluorophores, or pairs of fluorophores.

A filter fluorometer is a type of fluorometer that may be employed in fluorescence spectroscopy.

Fluorophore Agents that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label othe

A fluorophore is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with several π bonds.

Fluorescence microscope

A fluorescence microscope is an optical microscope that uses fluorescence and phosphorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. "Fluorescence microscope" refers to any microscope that uses fluorescence to generate an image, whether it is a more simple set up like an epifluorescence microscope or a more complicated design such as a confocal microscope, which uses optical sectioning to get better resolution of the fluorescence image.

Diamond simulant

A diamond simulant, diamond imitation or imitation diamond is an object or material with gemological characteristics similar to those of a diamond. Simulants are distinct from synthetic diamonds, which are actual diamonds having the same material properties as natural diamonds. Enhanced diamonds are also excluded from this definition. A diamond simulant may be artificial, natural, or in some cases a combination thereof. While their material properties depart markedly from those of diamond, simulants have certain desired characteristics—such as dispersion and hardness—which lend themselves to imitation. Trained gemologists with appropriate equipment are able to distinguish natural and synthetic diamonds from all diamond simulants, primarily by visual inspection.

Yttrium aluminium garnet (YAG, Y3Al5O12) is a synthetic crystalline material of the garnet group. It is also one of three phases of the yttrium-aluminium composite, the other two being yttrium aluminium monoclinic (YAM, Y4Al2O9) and yttrium aluminium perovskite (YAP, YAlO3).

Tairus


Tairus is a synthetic gemstone manufacturer. It was formed in 1989 as part of Mikhail Gorbachev's perestroika initiative to establish a joint venture between the Russian Academy of Sciences and Tairus Created Gems Co Ltd. of Bangkok, Thailand. Today Tairus is a major supplier of hydrothermally grown gemstones to the jewellery industry. Later, Tairus became a privately held enterprise, operating out of its Bangkok distribution hub under the trade name Tairus, owned by Tairus Created Gems Co Ltd. of Bangkok, Thailand.

Gemmological Institute of India is a gemmology training school in Mumbai, India.

References

  1. GemologyOnline.com