Chemical reactor materials selection

Last updated

Chemical reactor materials selection is an important aspect in the design of a chemical reactor. There are four main groups of chemical reactors - CSTR, PFR, semi-batch, and catalytic - with variations on each. Depending on the nature of the chemicals involved in the reaction, as well as the operating conditions (e.g. temperature and pressure), certain materials will perform better over others.

Contents

Material Options

Ashby diagram of strength versus maximum service temperature. Taken from CES EduPack Material and Process Selection Charts. ASHBY D.png
Ashby diagram of strength versus maximum service temperature. Taken from CES EduPack Material and Process Selection Charts.

There are several broad classes of materials available for use in creating a chemical reactor. Some examples include metals, glasses, ceramics, polymers, carbon, and composites. [2] Metals are the most common class of materials for chemical engineering equipment as they are comparatively easy to manufacture, have high strength, and are resistant to fracture. Glass is common in chemical laboratory equipment, but highly prone to fracture and so is not useful in large-scale industrial use. Ceramics are not that common of a material for chemical reactors as they are brittle and difficult to manufacture. Polymers have begun to gain more popularity in piping and valves as they aid in temperature stability. There are several forms of carbon, but the most useful form for reactors is carbon or graphite fibers in composites. [3]

Criteria for Selection

The most important criteria for a particular material is its safety. Engineers have a responsibility to ensure the safety of those who handle equipment or utilize a building or road for example, by minimizing the risks of injuries or casualties. Other considerations include strength, resistance to sudden failure from either mechanical or thermal shock, corrosion resistance, and cost, to name a few. [2] [3] To compare different materials to each other, it may prove useful to consult an ASHBY diagram and the ASME Pressure Vessel Codes. The material choice would be ideally drawn from known data as well as experience. Having a deeper understanding of the component requirements and the corrosion and degradation behavior will aid in materials selection. Additionally, knowing the performance of past systems, whether they be good or bad, will benefit the user in deciding on alternative alloys or using a coated system; if previous information is not available, then performing tests is recommended. [4]

High Temperature Operation

High temperature reactor operation includes a host of problems such as distortion and cracking due to thermal expansion and contraction, and high temperature corrosion. Some indications that the latter is occurring include burnt or charred surfaces, molten phases, distortion, thick scales, and grossly thinned metal. Some typical high-temperature alloys include iron, nickel, or cobalt that have >20% chromium for the purpose of forming a protective oxide against further oxidation. [4] There are also various other elements to aid in corrosion resistance such as aluminum, silicon, and rare earth elements such as yttrium, cerium, and lanthanum. Other additions such as reactive or refractory metals, can improve the mechanical properties of the reactor. Refractory metals can experience catastrophic oxidation, which turns metals into a powdery oxide with little use. This damage is worse in stagnant conditions, however silicide coatings have been proven to offer some resistance. [4]

Related Research Articles

Ceramic Inorganic, nonmetallic solid prepared by the action of heat

A ceramic is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing a nonmetallic mineral, such as clay, at a high temperature. Common examples are earthenware, porcelain, and brick.

Materials science Interdisciplinary field which deals with discovery and design of new materials, primarily of physical and chemical properties of solids

The interdisciplinary field of materials science, also commonly termed materials science and engineering, is the design and discovery of new materials, particularly solids. The intellectual origins of materials science stem from the Enlightenment, when researchers began to use analytical thinking from chemistry, physics, and engineering to understand ancient, phenomenological observations in metallurgy and mineralogy. Materials science still incorporates elements of physics, chemistry, and engineering. As such, the field was long considered by academic institutions as a sub-field of these related fields. Beginning in the 1940s, materials science began to be more widely recognized as a specific and distinct field of science and engineering, and major technical universities around the world created dedicated schools for its study.

Corrosion Gradual destruction of materials by chemical reaction with its environment

Corrosion is a natural process that converts a refined metal into a more chemically stable form such as oxide, hydroxide, or sulfide. It is the gradual destruction of materials by chemical and/or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

In materials science, superplasticity is a state in which solid crystalline material is deformed well beyond its usual breaking point, usually over about 600% during tensile deformation. Such a state is usually achieved at high homologous temperature. Examples of superplastic materials are some fine-grained metals and ceramics. Other non-crystalline materials (amorphous) such as silica glass and polymers also deform similarly, but are not called superplastic, because they are not crystalline; rather, their deformation is often described as Newtonian fluid. Superplastically deformed material gets thinner in a very uniform manner, rather than forming a "neck" that leads to fracture. Also, the formation of microvoids, which is another cause of early fracture, is inhibited.

Brazing High-temperature soldering; metal-joining technique by high-temperature molten metal filling

Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

Polymer degradation is a change in the properties—tensile strength, color, shape, etc.—of a polymer or polymer-based product under the influence of one or more environmental factors such as heat, light or chemicals such as acids, alkalis and some salts. These changes are usually undesirable, such as cracking and chemical disintegration of products or, more rarely, desirable, as in biodegradation, or deliberately lowering the molecular weight of a polymer for recycling. The changes in properties are often termed "aging".

Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period and three of the sixth period. They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They are chemically inert and have a relatively high density. Their high melting points make powder metallurgy the method of choice for fabricating components from these metals. Some of their applications include tools to work metals at high temperatures, wire filaments, casting molds, and chemical reaction vessels in corrosive environments. Partly due to the high melting point, refractory metals are stable against creep deformation to very high temperatures.

A cermet is a composite material composed of ceramic (cer) and metal (met) materials.

Refractory

A refractory material or refractory is a material that is resistant to decomposition by heat, pressure, or chemical attack, and retains strength and form at high temperatures. Refractories are inorganic, nonmetallic, porous, and heterogeneous. They are typically composed of oxides or non oxides like carbides, nitrides etc. of the following materials: silicon, aluminium, magnesium, calcium, and zirconium. Some metals with melting points >1850°C like niobium, chromium, zirconium, tungsten rhenium, tantalum etc. are also considered as refractories.

Chromium(II) carbide

Chromium(II) carbide is a ceramic compound that exists in several chemical compositions: Cr3C2, Cr7C3, and Cr23C6. At standard conditions it exists as a gray solid. It is extremely hard and corrosion resistant. It is also a refractory compound, which means that it retains its strength at high temperatures as well. These properties make it useful as an additive to metal alloys. When chromium carbide crystals are integrated into the surface of a metal it improves the wear resistance and corrosion resistance of the metal, and maintains these properties at elevated temperatures. The hardest and most commonly used composition for this purpose is Cr3C2.

Zirconium carbide

Zirconium carbide (ZrC) is an extremely hard refractory ceramic material, commercially used in tool bits for cutting tools. It is usually processed by sintering.

Stress corrosion cracking The growth of cracks in a corrosive environment

Stress corrosion cracking (SCC) is the growth of crack formation in a corrosive environment. It can lead to unexpected and sudden failure of normally ductile metal alloys subjected to a tensile stress, especially at elevated temperature. SCC is highly chemically specific in that certain alloys are likely to undergo SCC only when exposed to a small number of chemical environments. The chemical environment that causes SCC for a given alloy is often one which is only mildly corrosive to the metal. Hence, metal parts with severe SCC can appear bright and shiny, while being filled with microscopic cracks. This factor makes it common for SCC to go undetected prior to failure. SCC often progresses rapidly, and is more common among alloys than pure metals. The specific environment is of crucial importance, and only very small concentrations of certain highly active chemicals are needed to produce catastrophic cracking, often leading to devastating and unexpected failure.

Ceramic engineering The science and technology of creating objects from inorganic, non-metallic materials

Ceramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions. The term includes the purification of raw materials, the study and production of the chemical compounds concerned, their formation into components and the study of their structure, composition and properties.

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.

A material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified based on their physical and chemical properties, or on their geological origin or biological function. Materials science is the study of materials and their applications.

Sialon

SiAlON ceramics are a specialist class of high-temperature refractory materials, with high strength at ambient and high temperatures, good thermal shock resistance and exceptional resistance to wetting or corrosion by molten non-ferrous metals, compared to other refractory materials such as, for example, alumina. A typical use is with handling of molten aluminium. They also are exceptionally corrosion resistant and hence are also used in the chemical industry. SiAlONs also have high wear resistance, low thermal expansion and good oxidation resistance up to above ~1000 °C. They were first reported around 1971.

Solid One of the four fundamental states of matter

Solid is one of the four fundamental states of matter. The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structural rigidity and resistance to a force applied to the surface. Unlike a liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire available volume like a gas. The atoms in a solid are bound to each other, either in a regular geometric lattice, or irregularly. Solids cannot be compressed with little pressure whereas gases can be compressed with little pressure because the molecules in a gas are loosely packed.

Ceramic matrix composite

Ceramic matrix composites (CMCs) are a subgroup of composite materials and a subgroup of ceramics. They consist of ceramic fibers embedded in a ceramic matrix. The fibers and the matrix both can consist of any ceramic material, whereby carbon and carbon fibers can also be regarded as a ceramic material.

Ultra-high-temperature ceramics (UHTCs) are a class of refractory ceramics that offer excellent stability at temperatures exceeding 2000 °C being investigated as possible thermal protection system (TPS) materials, coatings for materials subjected to high temperatures, and bulk materials for heating elements. Broadly speaking, UHTCs are borides, carbides, nitrides, and oxides of early transition metals. Current efforts have focused on heavy, early transition metal borides such as hafnium diboride (HfB2) and zirconium diboride (ZrB2); additional UHTCs under investigation for TPS applications include hafnium nitride (HfN), zirconium nitride (ZrN), titanium carbide (TiC), titanium nitride (TiN), thorium dioxide (ThO2), tantalum carbide (TaC) and their associated composites.

SiC–SiC matrix composite is a particular type of ceramic matrix composite (CMC) which have been accumulating interest mainly as high temperature materials for use in applications such as gas turbines, as an alternative to metallic alloys. CMCs are generally a system of materials that are made up of ceramic fibers or particles that lie in a ceramic matrix phase. In this case, a SiC/SiC composite is made by having a SiC matrix phase and a fiber phase incorporated together by different processing methods. Outstanding properties of SiC/SiC composites include high thermal, mechanical, and chemical stability while also providing high strength to weight ratio.

References

  1. Ashby, Mike. "CES 2009 EduPack - Material and Process Selection Charts" (PDF). Archived from the original (PDF) on 2015-11-23.
  2. 1 2 Busby, J.T. "Challenges for Reactor Materials." Oak Ridge National Laboratory - Fuel Cycle and Isotopes Division. U.S. Department of Energy. 28 Feb. 2012.
  3. 1 2 Perry, Robert (2007). Chemical Engineers' Handbook. McGraw-Hill Education. ISBN   0071422943.
  4. 1 2 3 Elliot, Peter (February 2001). "Choose Materials for High-Temperature Environments" (PDF). CEP. Archived from the original (PDF) on 2016-04-18.