Material selection

Last updated

Material selection is a step in the process of designing any physical object. In the context of product design, the main goal of material selection is to minimize cost while meeting product performance goals. [1] Systematic selection of the best material for a given application begins with properties and costs of candidate materials. Material selection is often benefited by the use of material index or performance index relevant to the desired material properties. [2] For example, a thermal blanket must have poor thermal conductivity in order to minimize heat transfer for a given temperature difference. It is essential that a designer should have a thorough knowledge of the properties of the materials and their behavior under working conditions. Some of the important characteristics of materials are : strength, durability, flexibility, weight, resistance to heat and corrosion, ability to cast, welded or hardened, machinability, electrical conductivity, etc. [3] In contemporary design, sustainability is a key consideration in material selection. [4] Growing environmental consciousness prompts professionals to prioritize factors such as ecological impact, recyclability, and life cycle analysis in their decision-making process.

Contents

Systematic selection for applications requiring multiple criteria is more complex. For example, when the material should be both stiff and light, for a rod a combination of high Young's modulus and low density indicates the best material, whereas for a plate the cube root of stiffness divided by density is the best indicator, since a plate's bending stiffness scales by its thickness cubed. Similarly, again considering both stiffness and lightness, for a rod that will be pulled in tension the specific modulus, or modulus divided by density should be considered, whereas for a beam that will be subject to bending, the material index is the best indicator.

Reality often presents limitations, and the utilitarian factor must be taken in consideration. The cost of the ideal material, depending on shape, size and composition, may be prohibitive, and the demand, the commonality of frequently utilized and known items, its characteristics and even the region of the market dictate its availability.

Ashby plots

Plot of Young's modulus vs density. The colors represent families of materials. Young vs density linear.svg
Plot of Young's modulus vs density. The colors represent families of materials.

An Ashby plot, named for Michael Ashby of Cambridge University, is a scatter plot which displays two or more properties of many materials or classes of materials. [5] These plots are useful to compare the ratio between different properties. For the example of the stiff/light part discussed above would have Young's modulus on one axis and density on the other axis, with one data point on the graph for each candidate material. On such a plot, it is easy to find not only the material with the highest stiffness, or that with the lowest density, but that with the best ratio . Using a log scale on both axes facilitates selection of the material with the best plate stiffness .

Plot of Young's modulus vs density with log-log scaling. The colors represent families of materials. Young vs density-loglog.svg
Plot of Young's modulus vs density with log-log scaling. The colors represent families of materials.

The first plot on the right shows density and Young's modulus, in a linear scale. The second plot shows the same materials attributes in a log-log scale. Materials families (polymers, foams, metals, etc.) are identified by colors.

Cost issues

Cost of materials plays a very significant role in their selection. The most straightforward way to weight cost against properties is to develop a monetary metric for properties of parts. For example, life cycle assessment can show that the net present value of reducing the weight of a car by 1 kg averages around $5, so material substitution which reduces the weight of a car can cost up to $5 per kilogram of weight reduction more than the original material.[ citation needed ] However, the geography- and time-dependence of energy, maintenance and other operating costs, and variation in discount rates and usage patterns (distance driven per year in this example) between individuals, means that there is no single correct number for this. For commercial aircraft, this number is closer to $450/kg, and for spacecraft, launch costs around $20,000/kg dominate selection decisions. [6]

Thus as energy prices have increased and technology has improved, automobiles have substituted increasing amounts of lightweight magnesium and aluminium alloys for steel, aircraft are substituting carbon fiber reinforced plastic and titanium alloys for aluminium, and satellites have long been made out of exotic composite materials.

Of course, cost per kg is not the only important factor in material selection. An important concept is 'cost per unit of function'. For example, if the key design objective was the stiffness of a plate of the material, as described in the introductory paragraph above, then the designer would need a material with the optimal combination of density, Young's modulus, and price. Optimizing complex combinations of technical and price properties is a hard process to achieve manually, so rational material selection software is an important tool.

General method for using an Ashby chart

Utilizing an "Ashby chart" is a common method for choosing the appropriate material. First, three different sets of variables are identified:

Next, an equation for the performance index is derived. This equation numerically quantifies how desirable the material will be for a specific situation. By convention, a higher performance index denotes a better material. Lastly, the performance index is plotted on the Ashby chart. Visual inspection reveals the most desirable material.

Example of using an Ashby chart

In this example, the material will be subject to both tension and bending. Therefore, the optimal material will perform well under both circumstances.

Performance index during tension

In the first situation the beam experiences two forces: the weight of gravity and tension . The material variables are density and strength . Assume that the length and tension are fixed, making them design variables. Lastly the cross sectional area is a free variable. The objective in this situation is to minimize the weight by choosing a material with the best combination of material variables . Figure 1 illustrates this loading.

Figure 1. Beam under Tensile stress loading to minimize weight. Bar tensile stress.svg
Figure 1. Beam under Tensile stress loading to minimize weight.

The stress in the beam is measured as whereas weight is described by . Deriving a performance index requires that all free variables are removed, leaving only design variables and material variables. In this case that means that must be removed. The axial stress equation can be rearranged to give . Substituting this into the weight equation gives . Next, the material variables and design variables are grouped separately, giving .

Since both and are fixed, and since the goal is to minimize , then the ratio should be minimized. By convention, however, the performance index is always a quantity which should be maximized. Therefore, the resulting equation is

Performance index during bending

Next, suppose that the material is also subjected to bending forces. The max tensile stress equation of bending is , where is the bending moment, is the distance from the neutral axis, and is the moment of inertia. This is shown in Figure 2. Using the weight equation above and solving for the free variables, the solution arrived at is , where is the length and is the height of the beam. Assuming that , , and are fixed design variables, the performance index for bending becomes .

Figure 2. Beam under bending stress. Trying to minimize weight Beam bending stress.svg
Figure 2. Beam under bending stress. Trying to minimize weight

Selecting the best material overall

At this point two performance indices that have been derived: for tension and for bending . The first step is to create a log-log plot and add all known materials in the appropriate locations. However, the performance index equations must be modified before being plotted on the log-log graph.

For the tension performance equation , the first step is to take the log of both sides. The resulting equation can be rearranged to give . Note that this follows the format of , making it linear on a log-log graph. Similarly, the y-intercept is the log of . Thus, the fixed value of for tension in Figure 3 is 0.1.

The bending performance equation can be treated similarly. Using the power property of logarithms it can be derived that . The value for for bending is ≈ 0.0316 in Figure 3. Finally, both lines are plotted on the Ashby chart.

Figure 3. Ashby chart with performance indices plotted for maximum result Material-comparison--strength-vs-density plain.svg
Figure 3. Ashby chart with performance indices plotted for maximum result

First, the best bending materials can be found by examining which regions are higher on the graph than the bending line. In this case, some of the foams (blue) and technical ceramics (pink) are higher than the line. Therefore those would be the best bending materials. In contrast, materials which are far below the line (like metals in the bottom-right of the gray region) would be the worst materials.

Lastly, the tension line can be used to "break the tie" between foams and technical ceramics. Since technical ceramics are the only material which is located higher than the tension line, then the best-performing tension materials are technical ceramics. Therefore, the overall best material is a technical ceramics in the top-left of the pink region such as boron carbide.

Numerically understanding the chart

The performance index can then be plotted on the Ashby chart by converting the equation to a log scale. This is done by taking the log of both sides, and plotting it similar to a line with being the y-axis intercept. This means that the higher the intercept, the higher the performance of the material. By moving the line up the Ashby chart, the performance index gets higher. Each materials the line passes through, has the performance index listed on the y-axis. So, moving to the top of the chart while still touching a region of material is where the highest performance will be.

As seen from figure 3 the two lines intercept near the top of the graph at Technical ceramics and Composites. This will give a performance index of 120 for tensile loading and 15 for bending. When taking into consideration the cost of the engineering ceramics, especially because the intercept is around the Boron carbide, this would not be the optimal case. A better case with lower performance index but more cost effective solutions is around the Engineering Composites near CFRP.

Related Research Articles

<span class="mw-page-title-main">Speed of sound</span> Speed of sound wave through elastic medium

The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 m/s, or one km in 2.91 s or one mile in 4.69 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating. At 0 °C (32 °F), the speed of sound in air is about 331 m/s. More simply, the speed of sound is how fast vibrations travel.

<span class="mw-page-title-main">Fracture</span> Split of materials or structures under stress

Fracture is the appearance of a crack or complete separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band, or dislocation.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

<span class="mw-page-title-main">Buckling</span> Sudden change in shape of a structural component under load

In structural engineering, buckling is the sudden change in shape (deformation) of a structural component under load, such as the bowing of a column under compression or the wrinkling of a plate under shear. If a structure is subjected to a gradually increasing load, when the load reaches a critical level, a member may suddenly change shape and the structure and component is said to have buckled. Euler's critical load and Johnson's parabolic formula are used to determine the buckling stress of a column.

Topology optimization is a mathematical method that optimizes material layout within a given design space, for a given set of loads, boundary conditions and constraints with the goal of maximizing the performance of the system. Topology optimization is different from shape optimization and sizing optimization in the sense that the design can attain any shape within the design space, instead of dealing with predefined configurations.

<span class="mw-page-title-main">Bending</span> Strain caused by an external load

In applied mechanics, bending characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element.

<span class="mw-page-title-main">Soil mechanics</span> Branch of soil physics and applied mechanics that describes the behavior of soils

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids and particles but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, hydrology and soil physics.

<span class="mw-page-title-main">Rayleigh–Taylor instability</span> Unstable behavior of two contacting fluids of different densities

The Rayleigh–Taylor instability, or RT instability, is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid. Examples include the behavior of water suspended above oil in the gravity of Earth, mushroom clouds like those from volcanic eruptions and atmospheric nuclear explosions, supernova explosions in which expanding core gas is accelerated into denser shell gas, instabilities in plasma fusion reactors and inertial confinement fusion.

In metallurgy, selective leaching, also called dealloying, demetalification, parting and selective corrosion, is a corrosion type in some solid solution alloys, when in suitable conditions a component of the alloys is preferentially leached from the initially homogenous material. The less noble metal is removed from the alloy by a microscopic-scale galvanic corrosion mechanism. The most susceptible alloys are the ones containing metals with high distance between each other in the galvanic series, e.g. copper and zinc in brass. The elements most typically undergoing selective removal are zinc, aluminium, iron, cobalt, chromium, and others.

<span class="mw-page-title-main">Flexural strength</span> Material property

Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. The transverse bending test is most frequently employed, in which a specimen having either a circular or rectangular cross-section is bent until fracture or yielding using a three-point flexural test technique. The flexural strength represents the highest stress experienced within the material at its moment of yield. It is measured in terms of stress, here given the symbol .

<span class="mw-page-title-main">Lorenz system</span> System of ordinary differential equations with chaotic solutions

The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz. It is notable for having chaotic solutions for certain parameter values and initial conditions. In particular, the Lorenz attractor is a set of chaotic solutions of the Lorenz system. In popular media the "butterfly effect" stems from the real-world implications of the Lorenz attractor, namely that several different initial chaotic conditions evolve in phase space in a way that never repeats, so all chaos is unpredictable. This underscores that chaotic systems can be completely deterministic and yet still be inherently unpredictable over long periods of time. Because chaos continually increases in systems, we cannot predict the future of systems well. E.g., even the small flap of a butterfly’s wings could set the world on a vastly different trajectory, such as by causing a hurricane. The shape of the Lorenz attractor itself, when plotted in phase space, may also be seen to resemble a butterfly.

<span class="mw-page-title-main">Bresler–Pister yield criterion</span>

The Bresler–Pister yield criterion is a function that was originally devised to predict the strength of concrete under multiaxial stress states. This yield criterion is an extension of the Drucker–Prager yield criterion and can be expressed on terms of the stress invariants as

<span class="mw-page-title-main">Vacuum airship</span> Hypothetical airship concept

A vacuum airship, also known as a vacuum balloon, is a hypothetical airship that is evacuated rather than filled with a lighter-than-air gas such as hydrogen or helium. First proposed by Italian Jesuit priest Francesco Lana de Terzi in 1670, the vacuum balloon would be the ultimate expression of lifting power per volume displaced.

In solid mechanics, the Johnson–Holmquist damage model is used to model the mechanical behavior of damaged brittle materials, such as ceramics, rocks, and concrete, over a range of strain rates. Such materials usually have high compressive strength but low tensile strength and tend to exhibit progressive damage under load due to the growth of microfractures.

The Yukawa–Tsuno equation, first developed in 1959, is a linear free-energy relationship in physical organic chemistry. It is a modified version of the Hammett equation that accounts for enhanced resonance effects in electrophilic reactions of para- and meta-substituted organic compounds. This equation does so by introducing a new term to the original Hammett relation that provides a measure of the extent of resonance stabilization for a reactive structure that builds up charge in its transition state. The Yukawa–Tsuno equation can take the following forms:

<span class="mw-page-title-main">Rayleigh–Plesset equation</span> Ordinary differential equation

In fluid mechanics, the Rayleigh–Plesset equation or Besant–Rayleigh–Plesset equation is a nonlinear ordinary differential equation which governs the dynamics of a spherical bubble in an infinite body of incompressible fluid. Its general form is usually written as

<span class="mw-page-title-main">Rule of mixtures</span>

In materials science, a general rule of mixtures is a weighted mean used to predict various properties of a composite material. It provides a theoretical upper- and lower-bound on properties such as the elastic modulus, ultimate tensile strength, thermal conductivity, and electrical conductivity. In general there are two models, one for axial loading, and one for transverse loading.

Flotation of flexible objects is a phenomenon in which the bending of a flexible material allows an object to displace a greater amount of fluid than if it were completely rigid. This ability to displace more fluid translates directly into an ability to support greater loads, giving the flexible structure an advantage over a similarly rigid one. Inspiration to study the effects of elasticity are taken from nature, where plants, such as black pepper, and animals living at the water surface have evolved to take advantage of the load-bearing benefits elasticity imparts.

The volume (W) and displacement (Δ) indicators have been discovered by Philippe Samyn in 1997 to help the search for the optimal geometry of architectural structures.

<span class="mw-page-title-main">Johnson's parabolic formula</span> Formula to quantify column buckling under a given load

In structural engineering, Johnson's parabolic formula is an empirically based equation for calculating the critical buckling stress of a column. The formula is based on experimental results by J. B. Johnson from around 1900 as an alternative to Euler's critical load formula under low slenderness ratio conditions. The equation interpolates between the yield stress of the material to the critical buckling stress given by Euler's formula relating the slenderness ratio to the stress required to buckle a column.

References

  1. George E. Dieter (1997). "Overview of the Materials Selection Process", ASM Handbook Volume 20: Materials Selection and Design.
  2. Ashby, M. F. (1999). Materials selection in mechanical design (2nd ed.). Oxford, OX: Butterworth-Heinemann. p. 407. ISBN   0-7506-4357-9. OCLC   49708474.
  3. General Considerations of Machine Design Archived 2019-04-15 at the Wayback Machine , Mechanical Engineering Community & Discussion, retrieved 2018-04-15.
  4. "Mastering Material Selection Challenges in Engineering Plastics" . Retrieved 30 January 2024.
  5. Ashby, Michael (1999). Materials Selection in Mechanical Design (3rd ed.). Burlington, Massachusetts: Butterworth-Heinemann. ISBN   0-7506-4357-9.
  6. Ashby, Michael F. (2005). Materials Selection in Mechanical Design. USA: Elsevier Ltd. p. 251. ISBN   978-0-7506-6168-3.