Chen's theorem

Last updated
The statue of Chen Jingrun at Xiamen University. Chen Jing-run.JPG
The statue of Chen Jingrun at Xiamen University.

In number theory, Chen's theorem states that every sufficiently large even number can be written as the sum of either two primes, or a prime and a semiprime (the product of two primes).

Contents

It is a weakened form of Goldbach's conjecture, which states that every even number is the sum of two primes.

History

The theorem was first stated by Chinese mathematician Chen Jingrun in 1966, [1] with further details of the proof in 1973. [2] His original proof was much simplified by P. M. Ross in 1975. [3] Chen's theorem is a giant step towards the Goldbach's conjecture, and a remarkable result of the sieve methods.

Chen's theorem represents the strengthening of a previous result due to Alfréd Rényi, who in 1947 had shown there exists a finite K such that any even number can be written as the sum of a prime number and the product of at most K primes. [4] [5]

Variations

Chen's 1973 paper stated two results with nearly identical proofs. [2] :158 His Theorem I, on the Goldbach conjecture, was stated above. His Theorem II is a result on the twin prime conjecture. It states that if h is a positive even integer, there are infinitely many primes p such that p+h is either prime or the product of two primes.

Ying Chun Cai proved the following in 2002: [6]

There exists a natural number N such that every even integer n larger than N is a sum of a prime less than or equal to n0.95and a number with at most two prime factors.

Tomohiro Yamada claimed a proof of the following explicit version of Chen's theorem in 2015: [7]

Every even number greater than is the sum of a prime and a product of at most two primes.

In 2022, Matteo Bordignon implies there are gaps in Yamada's proof, which Bordignon overcomes in his PhD. thesis. [8]

Related Research Articles

<span class="mw-page-title-main">Prime number</span> Evenly divided only by 1 or itself

A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

<span class="mw-page-title-main">Goldbach's conjecture</span> Even integers as sums of two primes

Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers.

<span class="mw-page-title-main">Goldbach's weak conjecture</span> Solved conjecture about prime numbers

In number theory, Goldbach's weak conjecture, also known as the odd Goldbach conjecture, the ternary Goldbach problem, or the 3-primes problem, states that

<span class="mw-page-title-main">Analytic number theory</span> Exploring properties of the integers with complex analysis

In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers and additive number theory.

<span class="mw-page-title-main">Chen Jingrun</span> Chinese number theorist

Chen Jingrun, also known as Jing-Run Chen, was a Chinese mathematician who made significant contributions to number theory, including Chen's theorem and the Chen prime.

In mathematics, Schinzel's hypothesis H is one of the most famous open problems in the topic of number theory. It is a very broad generalization of widely open conjectures such as the twin prime conjecture. The hypothesis is named after Andrzej Schinzel.

<span class="mw-page-title-main">Alfréd Rényi</span> Hungarian mathematician (1921–1970)

Alfréd Rényi was a Hungarian mathematician known for his work in probability theory, though he also made contributions in combinatorics, graph theory, and number theory.

In mathematics, an untouchable number is a positive integer that cannot be expressed as the sum of all the proper divisors of any positive integer. That is, these numbers are not in the image of the aliquot sum function. Their study goes back at least to Abu Mansur al-Baghdadi, who observed that both 2 and 5 are untouchable.

In mathematics, a prime number p is called a Chen prime if p + 2 is either a prime or a product of two primes. The even number 2p + 2 therefore satisfies Chen's theorem.

<span class="mw-page-title-main">Olivier Ramaré</span> French mathematician

Olivier Ramaré is a French mathematician who works as Senior researcher for the CNRS. He is currently attached to Aix-Marseille Université.

Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proved by Euclid in his work Elements. There are several proofs of the theorem.

Additive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigroups with an operation of addition. Additive number theory has close ties to combinatorial number theory and the geometry of numbers. Two principal objects of study are the sumset of two subsets A and B of elements from an abelian group G,

In number theory, Vinogradov's theorem is a result which implies that any sufficiently large odd integer can be written as a sum of three prime numbers. It is a weaker form of Goldbach's weak conjecture, which would imply the existence of such a representation for all odd integers greater than five. It is named after Ivan Matveyevich Vinogradov who proved it in the 1930s. Hardy and Littlewood had shown earlier that this result followed from the generalized Riemann hypothesis, and Vinogradov was able to remove this assumption. The full statement of Vinogradov's theorem gives asymptotic bounds on the number of representations of an odd integer as a sum of three primes. The notion of "sufficiently large" was ill-defined in Vinogradov's original work, but in 2002 it was shown that 101346 is sufficiently large. Additionally numbers up to 1020 had been checked via brute force methods, thus only a finite number of cases to check remained before the odd Goldbach conjecture would be proven or disproven. In 2013, Harald Helfgott proved Goldbach's weak conjecture for all cases.

<span class="mw-page-title-main">Landau's problems</span> Four basic unsolved problems about prime numbers

At the 1912 International Congress of Mathematicians, Edmund Landau listed four basic problems about prime numbers. These problems were characterised in his speech as "unattackable at the present state of mathematics" and are now known as Landau's problems. They are as follows:

  1. Goldbach's conjecture: Can every even integer greater than 2 be written as the sum of two primes?
  2. Twin prime conjecture: Are there infinitely many primes p such that p + 2 is prime?
  3. Legendre's conjecture: Does there always exist at least one prime between consecutive perfect squares?
  4. Are there infinitely many primes p such that p − 1 is a perfect square? In other words: Are there infinitely many primes of the form n2 + 1?

In number theory, Lemoine's conjecture, named after Émile Lemoine, also known as Levy's conjecture, after Hyman Levy, states that all odd integers greater than 5 can be represented as the sum of an odd prime number and an even semiprime.

In mathematics, arithmetic combinatorics is a field in the intersection of number theory, combinatorics, ergodic theory and harmonic analysis.

A timeline of number theory.

The Waring–Goldbach problem is a problem in additive number theory, concerning the representation of integers as sums of powers of prime numbers. It is named as a combination of Waring's problem on sums of powers of integers, and the Goldbach conjecture on sums of primes. It was initiated by Hua Luogeng in 1938.

<i>Closing the Gap: The Quest to Understand Prime Numbers</i> Book on prime numbers

Closing the Gap: The Quest to Understand Prime Numbers is a book on prime numbers and prime gaps by Vicky Neale, published in 2017 by the Oxford University Press (ISBN 9780198788287). The Basic Library List Committee of the Mathematical Association of America has suggested that it be included in undergraduate mathematics libraries.

References

Citations

  1. Chen, J.R. (1966). "On the representation of a large even integer as the sum of a prime and the product of at most two primes". Kexue Tongbao. 11 (9): 385–386.
  2. 1 2 Chen, J.R. (1973). "On the representation of a larger even integer as the sum of a prime and the product of at most two primes". Sci. Sinica. 16: 157–176.
  3. Ross, P.M. (1975). "On Chen's theorem that each large even number has the form (p1+p2) or (p1+p2p3)". J. London Math. Soc. Series 2. 10, 4 (4): 500–506. doi:10.1112/jlms/s2-10.4.500.
  4. University of St Andrews - Alfréd Rényi
  5. Rényi, A. A. (1948). "On the representation of an even number as the sum of a prime and an almost prime". Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya (in Russian). 12: 57–78.
  6. Cai, Y.C. (2002). "Chen's Theorem with Small Primes". Acta Mathematica Sinica. 18 (3): 597–604. doi:10.1007/s101140200168. S2CID   121177443.
  7. Yamada, Tomohiro (2015-11-11). "Explicit Chen's theorem". arXiv: 1511.03409 [math.NT].
  8. Bordignon, Matteo (2022-02-08). "An Explict Version of Chen's Theorem". Bulletin of the Australian Mathematical Society. Cambridge University Press (CUP). 105 (2): 344–346. doi: 10.1017/s0004972721001301 . ISSN   0004-9727.

Books