In mathematics, a chiral algebra is an algebraic structure introduced by Beilinson & Drinfeld (2004) as a rigorous version of the rather vague concept of a chiral algebra in physics. In Chiral Algebras, Beilinson and Drinfeld introduced the notion of chiral algebra, which based on the pseudo-tensor category of D-modules. They give a 'coordinate independent' notion of vertex algebras, which are based on formal power series. Chiral algebras on curves are essentially conformal vertex algebras.
A chiral algebra [1] on a smooth algebraic curve is a right D-module , equipped with a D-module homomorphism
on and with an embedding , satisfying the following conditions
Where, for sheaves on , the sheaf is the sheaf on whose sections are sections of the external tensor product with arbitrary poles on the diagonal:
is the canonical bundle, and the 'diagonal extension by delta-functions' is
The category of vertex algebras as defined by Borcherds or Kac is equivalent to the category of chiral algebras on equivariant with respect to the group of translations.
Chiral algebras can also be reformulated as factorization algebras.
In mathematics, the tensor algebra of a vector space V, denoted T(V) or T•(V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product. It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property (see below).
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.
In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.
In mathematics, a comodule or corepresentation is a concept dual to a module. The definition of a comodule over a coalgebra is formed by dualizing the definition of a module over an associative algebra.
In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence.
In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.
In mathematics and theoretical physics, a locally compact quantum group is a relatively new C*-algebraic approach toward quantum groups that generalizes the Kac algebra, compact-quantum-group and Hopf-algebra approaches. Earlier attempts at a unifying definition of quantum groups using, for example, multiplicative unitaries have enjoyed some success but have also encountered several technical problems.
In mathematics, specifically in symplectic geometry, the momentum map is a tool associated with a Hamiltonian action of a Lie group on a symplectic manifold, used to construct conserved quantities for the action. The momentum map generalizes the classical notions of linear and angular momentum. It is an essential ingredient in various constructions of symplectic manifolds, including symplectic (Marsden–Weinstein) quotients, discussed below, and symplectic cuts and sums.
In mathematics, the Leray spectral sequence was a pioneering example in homological algebra, introduced in 1946 by Jean Leray. It is usually seen nowadays as a special case of the Grothendieck spectral sequence.
In mathematics, the Harish-Chandra isomorphism, introduced by Harish-Chandra , is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center of the universal enveloping algebra of a reductive Lie algebra to the elements of the symmetric algebra of a Cartan subalgebra that are invariant under the Weyl group .
In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales.
In probability theory, a random measure is a measure-valued random element. Random measures are for example used in the theory of random processes, where they form many important point processes such as Poisson point processes and Cox processes.
In mathematics, weak bialgebras are a generalization of bialgebras that are both algebras and coalgebras but for which the compatibility conditions between the two structures have been "weakened". In the same spirit, weak Hopf algebras are weak bialgebras together with a linear map S satisfying specific conditions; they are generalizations of Hopf algebras.
In mathematics, the Ran space of a topological space X is a topological space whose underlying set is the set of all nonempty finite subsets of X: for a metric space X the topology is induced by the Hausdorff distance. The notion is named after Ziv Ran.
In algebraic geometry, given a morphism f: X → S of schemes, the cotangent sheaf on X is the sheaf of -modules that represents S-derivations in the sense: for any -modules F, there is an isomorphism
In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
In physics, the poppy-seed bagel theorem concerns interacting particles confined to a bounded surface when the particles repel each other pairwise with a magnitude that is proportional to the inverse distance between them raised to some positive power . In particular, this includes the Coulomb law observed in Electrostatics and Riesz potentials extensively studied in Potential theory. Other classes of potentials, which not necessarily involve the Riesz kernel, for example nearest neighbor interactions, are also described by this theorem in the macroscopic regime. For such particles, a stable equilibrium state, which depends on the parameter , is attained when the associated potential energy of the system is minimal. For large numbers of points, these equilibrium configurations provide a discretization of which may or may not be nearly uniform with respect to the surface area of . The poppy-seed bagel theorem asserts that for a large class of sets , the uniformity property holds when the parameter is larger than or equal to the dimension of the set . For example, when the points are confined to the 2-dimensional surface of a torus embedded in 3 dimensions, one can create a large number of points that are nearly uniformly spread on the surface by imposing a repulsion proportional to the inverse square distance between the points, or any stronger repulsion. From a culinary perspective, to create the nearly perfect poppy-seed bagel where bites of equal size anywhere on the bagel would contain essentially the same number of poppy seeds, impose at least an inverse square distance repelling force on the seeds.
In theoretical physics, more specifically in quantum field theory and supersymmetry, supersymmetric Yang–Mills, also known as super Yang–Mills and abbreviated to SYM, is a supersymmetric generalization of Yang–Mills theory, which is a gauge theory that plays an important part in the mathematical formulation of forces in particle physics.
In mathematical physics, the Garnier integrable system, also known as the classical Gaudin model is a classical mechanical system discovered by René Garnier in 1919 by taking the 'Painlevé simplification' or 'autonomous limit' of the Schlesinger equations. It is a classical analogue to the quantum Gaudin model due to Michel Gaudin. The classical Gaudin models are integrable.
In mathematics and mathematical physics, a factorization algebra is an algebraic structure first introduced by Beilinson and Drinfel'd in an algebro-geometric setting as a reformulation of chiral algebras, and also studied in a more general setting by Costello to study quantum field theory.