Chlorophyll fluorescence

Last updated • 11 min readFrom Wikipedia, The Free Encyclopedia
A chlorophyll extract in alcohol shown under white light (above) and UV light inducing fluorescence (below). Fluorescence of chlorophyll under UV light.jpg
A chlorophyll extract in alcohol shown under white light (above) and UV light inducing fluorescence (below).
Confocal microscope images of a tomato leaf from Solanum lycopersicum. Brightfield DIC image showing guard cells and pavement cells (above). Same region showing Chlorophyll A autofluorescence with 440 nm laser excitation and far red emission (below). Chlorophyll Fluorescence.jpg
Confocal microscope images of a tomato leaf from Solanum lycopersicum. Brightfield DIC image showing guard cells and pavement cells (above). Same region showing Chlorophyll A autofluorescence with 440 nm laser excitation and far red emission (below).
Microscopic images of a moss leaf from Plagiomnium undulatum. Bright-field microscopy at the top and fluorescence microscopy at the bottom. The red fluorescence is from the chlorophyll in the chloroplasts. Zz Plagiomnium undulatum fluorescence.jpg
Microscopic images of a moss leaf from Plagiomnium undulatum . Bright-field microscopy at the top and fluorescence microscopy at the bottom. The red fluorescence is from the chlorophyll in the chloroplasts.

Chlorophyll fluorescence is light re-emitted by chlorophyll molecules during return from excited to non-excited states. It is used as an indicator of photosynthetic energy conversion in plants, algae and bacteria. Excited chlorophyll dissipates the absorbed light energy by driving photosynthesis (photochemical energy conversion), as heat in non-photochemical quenching or by emission as fluorescence radiation. As these processes are complementary processes, the analysis of chlorophyll fluorescence is an important tool in plant research with a wide spectrum of applications. [1] [2]

Contents

The Kautsky effect

Upon illumination of a dark-adapted leaf, there is a rapid rise in fluorescence from Photosystem II (PSII), followed by a slow decline. First observed by Kautsky et al., 1932, this is called the Kautsky Effect. This variable rise in chlorophyll fluorescence is due to photosystem II. [3] Fluorescence from photosystem I is not variable, but constant. [3]

The increase in fluorescence is due to PSII reaction centers being in a "closed" or chemically reduced state. [4] Reaction centers are "closed" when unable to accept further electrons. This occurs when electron acceptors downstream of PSII have not yet passed their electrons to a subsequent electron carrier, so are unable to accept another electron. Closed reaction centres reduce the overall photochemical efficiency, and so increases the level of fluorescence. Transferring a leaf from dark into light increases the proportion of closed PSII reaction centres, so fluorescence levels increase for 1–2 seconds. Subsequently, fluorescence decreases over a few minutes. This is due to; 1. more "photochemical quenching" in which electrons are transported away from PSII due to enzymes involved in carbon fixation; and 2. more "non-photochemical quenching" in which more energy is converted to heat.

Measuring fluorescence

Usually the initial measurement is the minimal level of fluorescence, . This is the fluorescence in the absence of photosynthetic light. [5]

To use measurements of chlorophyll fluorescence to analyse photosynthesis, researchers must distinguish between photochemical quenching and non-photochemical quenching (heat dissipation). This is achieved by stopping photochemistry, which allows researchers to measure fluorescence in the presence of non-photochemical quenching alone. To reduce photochemical quenching to negligible levels, a high intensity, short flash of light is applied to the leaf. This transiently closes all PSII reaction centres, which prevents energy of PSII being passed to downstream electron carriers. Non-photochemical quenching will not be affected if the flash is short. During the flash, the fluorescence reaches the level reached in the absence of any photochemical quenching, known as maximum fluorescence . [5]

The efficiency of photochemical quenching (which is a proxy of the efficiency of PSII) can be estimated by comparing to the steady yield of fluorescence in the light and the yield of fluorescence in the absence of photosynthetic light . The efficiency of non-photochemical quenching is altered by various internal and external factors. Alterations in heat dissipation mean changes in . Heat dissipation cannot be totally stopped, so the yield of chlorophyll fluorescence in the absence of non-photochemical quenching cannot be measured. Therefore, researchers use a dark-adapted point () with which to compare estimations of non-photochemical quenching. [5]

Common fluorescence parameters

: Minimal fluorescence (arbitrary units). Fluorescence level of dark-adapted sample when all reaction centers of the photosystem II are open.

: Maximal fluorescence (arbitrary units). Fluorescence level of dark-adapted sample when a high intensity pulse has been applied. All reaction centers of the photosystem II are closed.

: Minimal fluorescence (arbitrary units). Fluorescence level of light-adapted sample when all reaction centers of the photosystem II are open; it is lowered with respect to by non-photochemical quenching.

: Maximal fluorescence (arbitrary units). Fluorescence level of light-adapted sample when a high intensity pulse has been applied. All reaction centers of the photosystem II are closed.

: Steady-state terminal fluorescence (arbitrary units). A steady-state fluorescence level decreased (= quenched) by photochemical and non-photochemical processes.

: Half rise time from to .

Calculated parameters

is variable fluorescence. Calculated as = - . [6]

is the ratio of variable fluorescence to maximal fluorescence. Calculated as . [7] This is a measure of the maximum efficiency of PSII (the efficiency if all PSII centres were open). can be used to estimate the potential efficiency of PSII by taking dark-adapted measurements.

measures the efficiency of Photosystem II. Calculated as = . [8] This parameter measures the proportion of light absorbed by PSII that is used in photochemistry. As such, it can give a measure of the rate of linear electron transport and so indicates overall photosynthesis.

(photochemical quenching). Calculated as . [9] This parameter approximates the proportion of PSII reaction centres that are open.

Whilst gives an estimation of the efficiency, and tell us which processes which have altered the efficiency. Closure of reaction centers as a result of a high intensity light will alter the value of . Changes in the efficiency of non-photochemical quenching will alter the ratio .

Applications of the Theory

PSII yield as a measure of photosynthesis

Chlorophyll fluorescence appears to be a measure of photosynthesis, but this is an over-simplification. Fluorescence can measure the efficiency of PSII photochemistry, which can be used to estimate the rate of linear electron transport by multiplying by the light intensity. However, researchers generally mean carbon fixation when they refer to photosynthesis. Electron transport and CO2 fixation can correlate well, but may not correlate in the field due to processes such as photorespiration, nitrogen metabolism and the Mehler reaction.

Relating electron transport to carbon fixation

A powerful research technique is to simultaneously measure chlorophyll fluorescence and gas exchange to obtain a full picture of the response of plants to their environment. One technique is to simultaneously measure CO2 fixation and PSII photochemistry at different light intensities, in non-photorespiratory conditions. A plot of CO2 fixation and PSII photochemistry indicates the electron requirement per molecule CO2 fixed. From this estimation, the extent of photorespiration may be estimated. This has been used to explore the significance of photorespiration as a photoprotective mechanism during drought.

Fluorescence analysis can also be applied to understanding the effects of low and high temperatures.

Measuring stress and stress tolerance

Chlorophyll fluorescence can measure most types of plant stress. Chlorophyll fluorescence can be used as a proxy of plant stress because environmental stresses, e.g. extremes of temperature, light and water availability, can reduce the ability of a plant to metabolise normally. This can mean an imbalance between the absorption of light energy by chlorophyll and the use of energy in photosynthesis. [11]

Nitrogen Balance Index

Example of a portable multiparametric fluorometer that uses the ratio between chlorophyll and flavonols to detect the nitrogen deficiency of plants Multiplex research.png
Example of a portable multiparametric fluorometer that uses the ratio between chlorophyll and flavonols to detect the nitrogen deficiency of plants

Because of the link between chlorophyll content and nitrogen content in leaves, chlorophyll fluorometers can be used to detect nitrogen deficiency in plants, by several methods.

Based on several years of research and experimentation, polyphenols can be the indicators of nitrogen status of a plant. For instance, when a plant is under optimal conditions, it favours its primary metabolism and synthesises the proteins (nitrogen molecules) containing chlorophyll, and few flavonols (carbon-based secondary compounds). On the other hand, in case of lack of nitrogen, we will observe an increased production of flavonols by the plant. [14]

The NBI (Nitrogen Balance Index) by Force-A, allows the assessment of nitrogen conditions of a culture by calculating the ratio between Chlorophyll and Flavonols (related to Nitrogen/Carbon allocation) .

Measure Chlorophyll Content

Gitelson (1999) states, "The ratio between chlorophyll fluorescence at 735 nm and the wavelength range 700nm to 710 nm, F735/F700 was found to be linearly proportional to the chlorophyll content (with determination coefficient, r2, more than 0.95) and thus this ratio can be used as a precise indicator of chlorophyll content in plant leaves." [15]

Chlorophyll fluorometers

Fluorescence image (Ft value) of adaxial leaf surface IMAGING-PAM Chloropyhll Fluorometer.jpg
Fluorescence image (Ft value) of adaxial leaf surface

The development of fluorometers allowed chlorophyll fluorescence analysis to become a common method in plant research. Chlorophyll fluorescence analysis has been revolutionized by the invention of the Pulse-Amplitude-Modulation (PAM) technique [16] [17] and availability of the first commercial modulated chlorophyll fluorometer PAM-101 (Walz, Germany). By modulating the measuring light beam (microsecond-range pulses) and parallel detection of the excited fluorescence the relative fluorescence yield (Ft) can be determined in the presence of ambient light. Crucially, this means chlorophyll fluorescence can be measured in the field even in full sunlight. [5]

Today, chlorophyll fluorometers are designed for measuring many different plant mechanisms. The measuring protocols: FV/FM and OJIP measure the efficiency of Photosystem II samples at a common and known dark adapted state. These protocols are useful in measuring many types of plant stress. [18] Bernard Genty's light adapted measuring protocol ΔF/FM’, or Y(II), is an effective and sensitive way to measure plant samples under ambient or artificial lighting conditions. [19] However, since Y(II) values also change with light intensity, one should compare samples at the same light intensity unless light stress is the focus of the measurement. Y(II) can be more sensitive to some types of plant stress than FV/FM, such as heat stress. [20]

Other plant mechanism measuring protocols have also been developed. When a chloroplast absorbs light, some of the light energy goes to photochemistry, some goes to regulated heat dissipation, and some goes to unregulated heat dissipation. [21] Various chlorophyll fluorescence measuring parameters exist to measure all of these events. In the lake model, qL measures photochemical quenching, Y(NYO) measures plant regulated heat dissipation, and Y(NO) measures unregulated heat dissipation. [21] An older quenching protocol, called the puddle model, uses qP for photochemical quenching, qN for nonphotochemical quenching of both regulated and unregulated heat dissipation and NPQ for an estimate of nonphotochemical quenching. [22] NPQ has also been resurrected to the lake model mathematically. [23]

In addition, the parameters qE, and pNPQ have been developed to measure the photoprotective xanthophyll cycle. [24] [25] qT is a measure of state transitions. [26] qM is a measure of chloroplast migration, [27] and qI is a measure of plant photoinhibition. [28]

At lower actinic light levels NPQ = qE+qT+qI [24]

At high actinic light levels NPQ = qE+qM=qI [27]

Some fluorometers are designed to be portable and operated in one hand.

Consistent further development into imaging fluorometers facilitate the visualization of spatial heterogeneities in photosynthetic activity of samples. These heterogeneities naturally occur in plant leaves for example during growths, various environmental stresses or pathogen infection. Thus knowledge about sample heterogeneities is important for correct interpretation of the photosynthetic performance of the plant sample. High performance imaging fluorometer systems provide options to analyze single cell/single chloroplast as well as sample areas covering whole leaves or plants.

Alternative approaches

LIF sensors

Techniques based on the Kautsky effect do not exhaust the variety of detection and evaluation methods based on the chlorophyll fluorescence. In particular, recent advances in the area of laser-induced fluorescence (LIF) also provide an opportunity of developing sufficiently compact and efficient sensors for photophysiological status and biomass assessments. Instead of measuring the evolution of the total fluorescence flux, such sensors record the spectral density of this flux excited by strong monochromatic laser light pulses of nanoseconds duration. Requiring no 15- 20 min dark adaptation period (as is the case for the Kautsky effect methods [29] ) and being capable to excite the sample from considerable distance, the LIF sensors can provide fast and remote evaluation.

See also

Notes

  1. Lu, Congming; Zhang, Jianhua (July 1999). "Effects of Water Stress on Photosystem II Photochemistry and Its Thermostability in Wheat Plants" (PDF). Journal of Experimental Botany. 50 (336): 1199–1206. doi: 10.1093/jxb/50.336.1199 . Archived (PDF) from the original on 2016-06-16. Retrieved 2016-03-08.
  2. Lembrechts, JJ; Zinnert, JC; Mänd, P; De Boeck, HJ. "5.1 Chlorophyll fluorescence". ClimEx Handbook. Archived from the original on 2020-01-14. Retrieved 2020-01-14.
  3. 1 2 Zhu, X-G.; Govindjee, Baker N.R.; Ort, D.R.; Long, S.P. (2005). "Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II". Planta. 223 (1): 114–133. doi:10.1007/s00425-005-0064-4. PMID   16411287. S2CID   9698923.
  4. Zhu, X-G.; Govindjee; Baker, N.R.; de Sturler, E.; Ort, D.R.; Long, S.P. (2005). "Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II" (PDF). Planta. 223 (1): 114–133. doi:10.1007/s00425-005-0064-4. PMID   16411287. S2CID   9698923.
  5. 1 2 3 4 "Chlorophyll fluorescence—a practical guide". Jxb.oxfordjournals.org. 2000-04-01. Archived from the original on 2012-04-23. Retrieved 2011-03-28.
  6. 1 2 "Effects of Boron and Salinity on Red Raspberry in Vitro". International Journal of Fruit Science. Informaworld.com. 2008-12-03.
  7. Kitajima M, Butler WL (1975). "Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone". Biochim Biophys Acta. 376 (1): 105–115. doi:10.1016/0005-2728(75)90209-1. PMID   1125215.
  8. Genty B, Briantais J-M, Baker NR (1989). "The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence". Biochim Biophys Acta. 990: 87–92. doi:10.1016/s0304-4165(89)80016-9.
  9. Schreiber U, Schliwa U, Bilger W (1986). "Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer". Photosynth Res. 10 (1–2): 51–62. doi:10.1007/bf00024185. PMID   24435276. S2CID   23021516.
  10. Sobrado (2008). "Leaf characteristics and diurnal variation of chlorophyll fluorescence in leaves of the 'bana' vegetation of the amazon region". Photosynthetica. 46 (2): 202–207. doi: 10.1007/s11099-008-0033-9 . S2CID   20907425.
  11. "Plant Stress Biology". Personalpages.manchester.ac.uk. Archived from the original on 2017-07-27. Retrieved 2011-03-28.
  12. Favaretto; et al. (2011). "Differential responses of antioxidant enzymes in pioneer and late-successional tropical tree species grown under sun and shade conditions". Environmental and Experimental Botany. 70: 20–28. doi:10.1016/j.envexpbot.2010.06.003.
  13. Lu, Congming; Zhang, Jianhua (1999). "Effects of Water Stress on Photosystem II Photochemistry and Its Thermostability in Wheat Plants". Journal of Experimental Botany. 50 (336): 1199–1206. doi: 10.1093/jexbot/50.336.1199 .
  14. A. Cartelat; Z.G. Cerovic; Y. Goulas; S. Meyer; C. Lelarge; J.-L. Prioul; A. Barbottin; M.-H. Jeuffroy; P. Gate; G. Agati; I. Moya (2005). "Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.)". Field Crops Research. 91: 35–49. doi:10.1016/j.fcr.2004.05.002.
  15. Gitelson, Anatoly A; Buschmann, Claus; Lichtenthaler, Hartmut K (1999). "The Chlorophyll Fluorescence Ratio F735/F700 as an Accurate Measure of the Chlorophyll Content in Plants". Remote Sensing of Environment. 69 (3): 296–302. Bibcode:1999RSEnv..69..296G. doi:10.1016/S0034-4257(99)00023-1.
  16. Schreiber U, Bilger W, Schliwa U (1986). "Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer". Photosynth. Res. 10 (1–2): 51–62. doi:10.1007/bf00024185. PMID   24435276. S2CID   23021516.
  17. Schreiber, Ulrich (1986). "Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer" . Photosynth. Res. 9 (1–2): 261–272. doi:10.1007/bf00029749. PMID   24442302. S2CID   19087818. Archived from the original on 2018-06-03. Retrieved 2017-08-28.
  18. Baker, Neil R.; Oxborough, Kevin (2004). "Chlorophyll Fluorescence as a Probe of Photosynthetic Productivity". Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration. Vol. 19. pp. 65–82. doi:10.1007/978-1-4020-3218-9_3. ISBN   978-1-4020-3217-2.
  19. Genty, Bernard; Briantais, Jean-Marie; Baker, Neil R. (1989). "The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence". Biochimica et Biophysica Acta (BBA) - General Subjects. 990: 87–92. doi:10.1016/S0304-4165(89)80016-9.
  20. Haldimann, P.; Feller, U. (2004). "Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/Oxygenase". Plant, Cell and Environment. 27 (9): 1169–1183. doi: 10.1111/j.1365-3040.2004.01222.x .
  21. 1 2 Kramer, D. M.; Johnson, G.; Kiirats, O.; Edwards, G. (2004). "New fluorescence parameters for determination of QA redox state and excitation energy fluxes". Photosynthesis Research. 79 (2): 209–218. doi:10.1023/b:pres.0000015391.99477.0d. PMID   16228395. S2CID   15860339.
  22. van Kooten, O; Snel, J (1990). "The use of chlorophyll fluorescence nomenclature in plant stress physiology". Photosynth Res. 25 (3): 147–150. doi:10.1007/bf00033156. PMID   24420345. S2CID   206766959.
  23. Klughammer C., and Schreiber U. (2008) PAM Application notes 2008 1:27 -35
  24. 1 2 Muller, P.; Xiao-Ping, L.; Niyogi, K. (2001). "Non-Photochemical Quenching. A Response to Excess Light Energy". Plant Physiology. 125 (4): 1558–1566. doi:10.1104/pp.125.4.1558. PMC   1539381 . PMID   11299337.
  25. Ruban, Alexander V.; Murchie, Erik H. (2012). "Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: A new approach". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1817 (7): 977–982. doi: 10.1016/j.bbabio.2012.03.026 . PMID   22503831.
  26. Ruban, A.V.; Johnson, M.P. (2009). "Dynamics of higher plant photosystem cross-section associated with state transitions". Photosynthesis Research. 99 (3): 173–183. doi:10.1007/s11120-008-9387-x. PMID   19037743. S2CID   6194519.
  27. 1 2 Cazzaniga, S; Osto, L.D.; Kong, S-G.; Wada, M.; Bassi, R. (2013). "Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis". The Plant Journal. 76 (4): 568–579. doi: 10.1111/tpj.12314 . PMID   24033721.
  28. Lichtenthaler, Hartmut K.; Babani, Fatbardha (2004). "Light Adaptation and Senescence of the Photosynthetic Apparatus. Changes in Pigment Composition, Chlorophyll Fluorescence Parameters and Photosynthetic Activity". Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration. Vol. 19. pp. 713–736. doi:10.1007/978-1-4020-3218-9_28. ISBN   978-1-4020-3217-2.
  29. Handy PEA: Continuous Excitation Plant Efficiency Analyser (PDF). Norfolk: Hansatech Instruments. 2012. p. 2. Archived from the original (PDF) on 2016-04-07. Retrieved 2014-05-23.
  30. Lavrov; et al. (2012). "Water stress assessment of cork oak leaves and maritime pine needles based on LIF spectra". Optics and Spectroscopy. 112 (2): 271–279. Bibcode:2012OptSp.112..271L. doi:10.1134/S0030400X12020166. S2CID   123049193.
  31. Silvestre et al. Contribution of pPLAIIα to drought tolerance using genetically modified arabidopsis plants: II. Effects on photosynthetic metabolism. Int. Meeting Prog. Plant Symposium of the SEB: Oxidative stress and cell death in plants: mechanisms and implications, Florence, Italy, 26–28 June 2013, p. 5
  32. Utkin; et al. (2013). "Compact low-cost detector for in vivo assessment of microphytobenthos using laser induced fluorescence". Optics and Spectroscopy. 114 (3): 471–477. Bibcode:2013OptSp.114..471U. doi:10.1134/S0030400X13030259. S2CID   124095431.
  33. Vieira; et al. (2011). "Effects of intertidal microphytobenthos migration on biomass determination via laser-induced fluorescence" (PDF). Marine Ecology Progress Series. 432: 45–52. doi: 10.3354/meps09157 .

Related Research Articles

<span class="mw-page-title-main">Chlorophyll</span> Green pigments found in plants, algae and bacteria

Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words χλωρός and φύλλον. Chlorophyll allows plants to absorb energy from light. Those pigments are involved in oxygenic photosynthesis, as opposed to bacteriochlorophylls, related molecules found only in bacteria and involved in anoxygenic photosynthesis.

<span class="mw-page-title-main">Photosynthesis</span> Biological process to convert light into chemical energy

Photosynthesis is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism. Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds like sugars, glycogen, cellulose and starches. To use this stored chemical energy, an organism's cells metabolize the organic compounds through cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.

Photobiology is the scientific study of the beneficial and harmful interactions of light in living organisms. The field includes the study of photophysics, photochemistry, photosynthesis, photomorphogenesis, visual processing, circadian rhythms, photomovement, bioluminescence, and ultraviolet radiation effects.

<span class="mw-page-title-main">Photosystem II</span> First protein complex in light-dependent reactions of oxygenic photosynthesis

Photosystem II is the first protein complex in the light-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants, algae, and cyanobacteria. Within the photosystem, enzymes capture photons of light to energize electrons that are then transferred through a variety of coenzymes and cofactors to reduce plastoquinone to plastoquinol. The energized electrons are replaced by oxidizing water to form hydrogen ions and molecular oxygen.

Chlorophyll <i>a</i> Chemical compound

Chlorophyll a is a specific form of chlorophyll used in oxygenic photosynthesis. It absorbs most energy from wavelengths of violet-blue and orange-red light, and it is a poor absorber of green and near-green portions of the spectrum. Chlorophyll does not reflect light but chlorophyll-containing tissues appear green because green light is diffusively reflected by structures like cell walls. This photosynthetic pigment is essential for photosynthesis in eukaryotes, cyanobacteria and prochlorophytes because of its role as primary electron donor in the electron transport chain. Chlorophyll a also transfers resonance energy in the antenna complex, ending in the reaction center where specific chlorophylls P680 and P700 are located.

Far-red light is a range of light at the extreme red end of the visible spectrum, just before infrared light. Usually regarded as the region between 700 and 750 nm wavelength, it is dimly visible to human eyes. It is largely reflected or transmitted by plants because of the absorbance spectrum of chlorophyll, and it is perceived by the plant photoreceptor phytochrome. However, some organisms can use it as a source of energy in photosynthesis. Far-red light also is used for vision by certain organisms such as some species of deep-sea fishes and mantis shrimp.

Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by absorption of light or photons. It is defined as the interaction of one or more photons with one target molecule that dissociates into two fragments.

Photoprotection is the biochemical process that helps organisms cope with molecular damage caused by sunlight. Plants and other oxygenic phototrophs have developed a suite of photoprotective mechanisms to prevent photoinhibition and oxidative stress caused by excess or fluctuating light conditions. Humans and other animals have also developed photoprotective mechanisms to avoid UV photodamage to the skin, prevent DNA damage, and minimize the downstream effects of oxidative stress.

In biophysics, the Kautsky effect is a phenomenon consisting of a typical variation in the behavior of a plant fluorescence when exposed to light. It was discovered in 1931 by H. Kautsky and A. Hirsch.

<span class="mw-page-title-main">Biohydrogen</span> Hydrogen that is produced biologically

Biohydrogen is H2 that is produced biologically. Interest is high in this technology because H2 is a clean fuel and can be readily produced from certain kinds of biomass, including biological waste. Furthermore some photosynthetic microorganisms are capable to produce H2 directly from water splitting using light as energy source.

<span class="mw-page-title-main">Photoinhibition</span>

Photoinhibition is light-induced reduction in the photosynthetic capacity of a plant, alga, or cyanobacterium. Photosystem II (PSII) is more sensitive to light than the rest of the photosynthetic machinery, and most researchers define the term as light-induced damage to PSII. In living organisms, photoinhibited PSII centres are continuously repaired via degradation and synthesis of the D1 protein of the photosynthetic reaction center of PSII. Photoinhibition is also used in a wider sense, as dynamic photoinhibition, to describe all reactions that decrease the efficiency of photosynthesis when plants are exposed to light.

<span class="mw-page-title-main">Photosynthetic reaction centre protein family</span>

Photosynthetic reaction centre proteins are main protein components of photosynthetic reaction centres (RCs) of bacteria and plants. They are transmembrane proteins embedded in the chloroplast thylakoid or bacterial cell membrane.

Non-photochemical quenching (NPQ) is a mechanism employed by plants and algae to protect themselves from the adverse effects of high light intensity. It involves the quenching of singlet excited state chlorophylls (Chl) via enhanced internal conversion to the ground state, thus harmlessly dissipating excess excitation energy as heat through molecular vibrations. NPQ occurs in almost all photosynthetic eukaryotes, and helps to regulate and protect photosynthesis in environments where light energy absorption exceeds the capacity for light utilization in photosynthesis.

<span class="mw-page-title-main">Light-dependent reactions</span> Photosynthetic reactions

Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).

The nutrient content of a plant can be assessed by testing a sample of tissue from that plant. These tests are important in agriculture since fertilizer application can be fine-tuned if the plants nutrient status is known. Nitrogen most commonly limits plant growth and is the most managed nutrient.

<span class="mw-page-title-main">Plant stress measurement</span> CO2-1PPM

Plant stress measurement is the quantification of environmental effects on plant health. When plants are subjected to less than ideal growing conditions, they are considered to be under stress. Stress factors can affect growth, survival and crop yields. Plant stress research looks at the response of plants to limitations and excesses of the main abiotic factors, and of other stress factors that are important in particular situations. Plant stress measurement usually focuses on taking measurements from living plants. It can involve visual assessments of plant vitality, however, more recently the focus has moved to the use of instruments and protocols that reveal the response of particular processes within the plant

<span class="mw-page-title-main">Chlororespiration</span>

Chlororespiration is a respiratory process that takes place within plants. Inside plant cells there is an organelle called the chloroplast which is surrounded by the thylakoid membrane. This membrane contains an enzyme called NAD(P)H dehydrogenase which transfers electrons in a linear chain to oxygen molecules. This electron transport chain (ETC) within the chloroplast also interacts with those in the mitochondria where respiration takes place. Photosynthesis is also a process that Chlororespiration interacts with. If photosynthesis is inhibited by environmental stressors like water deficit, increased heat, and/or increased/decreased light exposure, or even chilling stress then chlororespiration is one of the crucial ways that plants use to compensate for chemical energy synthesis.

<span class="mw-page-title-main">Orange carotenoid protein</span>

Orange carotenoid protein (OCP) is a water-soluble protein which plays a role in photoprotection in diverse cyanobacteria. It is the only photoactive protein known to use a carotenoid as the photoresponsive chromophore. The protein consists of two domains, with a single keto-carotenoid molecule non-covalently bound between the two domains. It is a very efficient quencher of excitation energy absorbed by the primary light-harvesting antenna complexes of cyanobacteria, the phycobilisomes. The quenching is induced by blue-green light. It is also capable of preventing oxidative damage by directly scavenging singlet oxygen (1O2).

A light-induced fluorescence transient (LIFT) is a device to remotely measure chlorophyll fluorescence in plants in a fast and non-destructive way. By using a series of excitation light pulses, LIFT combines chlorophyll fluorescence data with spectral and RGB information to provide insights into various photosynthetic traits and vegetation indices. LIFT combines the pump-probe method with the principle of laser-induced fluorescence.

References