Chromomere

Last updated

A chromomere, also known as an idiomere, is one of the serially aligned beads or granules of a eukaryotic chromosome, resulting from local coiling of a continuous DNA thread. [1] Chromomeres are regions of chromatin that have been compacted through localized contraction. In areas of chromatin with the absence of transcription, condensing of DNA and protein complexes will result in the formation of chromomeres. [2] It is visible on a chromosome during the prophase of meiosis and mitosis. Giant banded (Polytene) chromosomes resulting from the replication of the chromosomes and the synapsis of homologs without cell division is a process called endomitosis. These chromosomes consist of more than 1000 copies of the same chromatid that are aligned and produce alternating dark and light bands when stained. The dark bands are the chromomere.

Contents

It is unknown when chromomeres first appear on the chromosome. Chromomeres can be observed best when chromosomes are highly condensed. [2] The chromomeres are present during leptotene phase of prophase I during meiosis. During zygotene phase of prophase I, the chromomeres of homologs align with each other to form homologous rough pairing (homology searching). These chromomeres helps provide a unique identity for each homologous pairs. They appear as dense granules during leptotene stage

There are more than 2000 chromomeres on 20 chromosomes of maize.

Polytene chromosome of Drosophila. (b) Displays the chromomeric and interchromomeric bands of the chromosome. Drosophila polytene chromosomes 2.jpg
Polytene chromosome of Drosophila. (b) Displays the chromomeric and interchromomeric bands of the chromosome.

Physical properties

Chromomeres are organized in a discontinuous linear pattern along the condensed chromosomes (pachytene chromosomes) during the prophase stage of meiosis. [2] The linear pattern of chromomeres is linked to the arrangement of genes along the chromosome. [2] [3] Chromomeres contain genes and sometimes clusters of genes within their structure. [3] Aggregates of chromomeres are known as chromonemata. [4]

Cohesive proteins SMC3 and hRAD21(plays a role in sister chromatid cohesion) are found within chromomeres at high concentrations, and maintain the proper structure of chromomeres. The protein XCAP-D2 is also present at high concentrations within the chromomere, and acts as a condensin component. High concentrations of tandem repeats of the heterochromatin protein HP1β builds up within the chromomere. In regions where loops attach to chromomeres, there is hyperacetylation of histone 4. The extra acetylation loosens chromatin from a condensed form, making it more accessible to proteins involved in transcription. [2]

Functions

Chromomeres are known as the structural subunit of a chromosome. The arrangement of chromomere structure can aid in control of gene expression. [3]

Maps of chromomeres can be made for use in genetic and evolutionary studies. Chromomeric maps can be used to locate the exact position of genes on a chromosome. Chromomeric maps can be used to analyze chromosome aberrations, and find correlations between the aberrations and their effects on genes near breakpoints. [3]

Lampbrush chromosomes and chromomeres

Chromomeres display different properties and behaviours when associated with lampbrush chromosomes. Although found all across the lampbrush chromosome, they are not organized in a clear pattern along as they are in normal pachytene chromosomes of meiosis. [2] [5] The two sister chromatids of a lampbrush chromosome separate fully, forming lateral loops that extend from chromomeres, and act as transcription complexes. The lateral loops are areas where the chromosomes are transcriptionally active. [2] [5] The loops define where the chromomere will be positioned. The chromomere is an organization of regions of non-transcribed chromatin. These regions of chromatin that have not been transcribed are located at the ends of the loops that were formed by the sister chromatids of a lampbrush chromosome. [2] Each chromomere can have up to several pairs of loops from lampbrush chromosomes originating from it, as well as micro-loops that cannot be detected with a light microscope. [6]

Chromomeres of lampbrush chromosomes act as structural units, and are not considered to be genetic units participating in transcription. The arrangement of a chromosome into chromomeric units happens almost simultaneously with the start of transcription. [2] The loop structures extending from chromomeres are maintained by a high level of transcriptional activity and structural proteins of the chromosome. Chromatin within the chromomere are held in position by a variety of histone modifications and epigenetic markers. [5]

Methyl-CpG-binding protein 2 (MeCP2) is a protein that binds to methylated DNA. MeCP2 has been found to associate most strongly with transcriptionally inactive chromomere domains. MeCP2 binding patterns to chromomere domains are proportional to the density of chromomeric DNA found on a chromosome. The binding of MeCP2 to chromomeric regions represents regions of chromatin that are highly dynamic on the lampbrush chromosome. [6]

Related Research Articles

Chromatin is a complex of DNA and protein found in eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in reinforcing the DNA during cell division, preventing DNA damage, and regulating gene expression and DNA replication. During mitosis and meiosis, chromatin facilitates proper segregation of the chromosomes in anaphase; the characteristic shapes of chromosomes visible during this stage are the result of DNA being coiled into highly condensed chromatin.

<span class="mw-page-title-main">Meiosis</span> Cell division producing haploid gametes

Meiosis (; from Ancient Greek μείωσις 'lessening', is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, the sperm or egg cells. It involves two rounds of division that ultimately result in four cells, each with only one copy of each chromosome. Additionally, prior to the division, genetic material from the paternal and maternal copies of each chromosome is crossed over, creating new combinations of code on each chromosome. Later on, during fertilisation, the haploid cells produced by meiosis from a male and a female will fuse to create a zygote, a cell with two copies of each chromosome again.

<span class="mw-page-title-main">Chromosomal crossover</span> Cellular process

Chromosomal crossover, or crossing over, is the exchange of genetic material during sexual reproduction between two homologous chromosomes' non-sister chromatids that results in recombinant chromosomes. It is one of the final phases of genetic recombination, which occurs in the pachytene stage of prophase I of meiosis during a process called synapsis. Synapsis begins before the synaptonemal complex develops and is not completed until near the end of prophase I. Crossover usually occurs when matching regions on matching chromosomes break and then reconnect to the other chromosome.

<span class="mw-page-title-main">Prophase</span> First phase of cell division in both mitosis and meiosis

Prophase is the first stage of cell division in both mitosis and meiosis. Beginning after interphase, DNA has already been replicated when the cell enters prophase. The main occurrences in prophase are the condensation of the chromatin reticulum and the disappearance of the nucleolus.

<span class="mw-page-title-main">Homologous chromosome</span> Chromosomes that pair in fertilization

A pair of homologous chromosomes, or homologs, is a set of one maternal and one paternal chromosome that pair up with each other inside a cell during fertilization. Homologs have the same genes in the same loci, where they provide points along each chromosome that enable a pair of chromosomes to align correctly with each other before separating during meiosis. This is the basis for Mendelian inheritance, which characterizes inheritance patterns of genetic material from an organism to its offspring parent developmental cell at the given time and area.

<span class="mw-page-title-main">Histone acetyltransferase</span> Enzymes that catalyze acyl group transfer from acetyl-CoA to histones

Histone acetyltransferases (HATs) are enzymes that acetylate conserved lysine amino acids on histone proteins by transferring an acetyl group from acetyl-CoA to form ε-N-acetyllysine. DNA is wrapped around histones, and, by transferring an acetyl group to the histones, genes can be turned on and off. In general, histone acetylation increases gene expression.

<span class="mw-page-title-main">Constitutive heterochromatin</span>

Constitutive heterochromatin domains are regions of DNA found throughout the chromosomes of eukaryotes. The majority of constitutive heterochromatin is found at the pericentromeric regions of chromosomes, but is also found at the telomeres and throughout the chromosomes. In humans there is significantly more constitutive heterochromatin found on chromosomes 1, 9, 16, 19 and Y. Constitutive heterochromatin is composed mainly of high copy number tandem repeats known as satellite repeats, minisatellite and microsatellite repeats, and transposon repeats. In humans these regions account for about 200Mb or 6.5% of the total human genome, but their repeat composition makes them difficult to sequence, so only small regions have been sequenced.

<span class="mw-page-title-main">Epigenome</span> Biological term

In biology, the epigenome of an organism is the collection of chemical changes to its DNA and histone proteins that affects when, where, and how the DNA is expressed; these changes can be passed down to an organism's offspring via transgenerational epigenetic inheritance. Changes to the epigenome can result in changes to the structure of chromatin and changes to the function of the genome. The human epigenome, including DNA methylation and histone modification, is maintained through cell division. The epigenome is essential for normal development and cellular differentiation, enabling cells with the same genetic code to perform different functions. The human epigenome is dynamic and can be influenced by environmental factors such as diet, stress, and toxins.

<span class="mw-page-title-main">Synaptonemal complex</span> Protein structure

The synaptonemal complex (SC) is a protein structure that forms between homologous chromosomes during meiosis and is thought to mediate synapsis and recombination during prophase I during meiosis in eukaryotes. It is currently thought that the SC functions primarily as a scaffold to allow interacting chromatids to complete their crossover activities.

<span class="mw-page-title-main">Synapsis</span> Biological phenomenon in meiosis

Synapsis or Syzygy is the pairing of two chromosomes that occurs during meiosis. It allows matching-up of homologous pairs prior to their segregation, and possible chromosomal crossover between them. Synapsis takes place during prophase I of meiosis. When homologous chromosomes synapse, their ends are first attached to the nuclear envelope. These end-membrane complexes then migrate, assisted by the extranuclear cytoskeleton, until matching ends have been paired. Then the intervening regions of the chromosome are brought together, and may be connected by a protein-DNA complex called the synaptonemal complex (SC). The SC protein scaffold stabilizes the physical pairing of homologous chromosomes by polymerizing between them during meiotic prophase. During synapsis, autosomes are held together by the synaptonemal complex along their whole length, whereas for sex chromosomes, this only takes place at one end of each chromosome.

Zygotene is the second stage of prophase I during meiosis, the specialized cell division that reduces the chromosome number by half to produce haploid gametes. It follows the Leptotene stage and is followed by Pachytene stage.

The pachytene stage, also known as pachynema, is the third stage of prophase I during meiosis, the specialized cell division that reduces chromosome number by half to produce haploid gametes. It follows the zygotene stage and is followed by the stage Diplotene

<span class="mw-page-title-main">Cohesin</span> Protein complex that regulates the separation of sister chromatids during cell division

Cohesin is a protein complex that mediates sister chromatid cohesion, homologous recombination, and DNA looping. Cohesin is formed of SMC3, SMC1, SCC1 and SCC3. Cohesin holds sister chromatids together after DNA replication until anaphase when removal of cohesin leads to separation of sister chromatids. The complex forms a ring-like structure and it is believed that sister chromatids are held together by entrapment inside the cohesin ring. Cohesin is a member of the SMC family of protein complexes which includes Condensin, MukBEF and SMC-ScpAB.

<span class="mw-page-title-main">Lampbrush chromosome</span> Chromosome appearance found in growing oocytes

Lampbrush chromosome are a special form of chromosome found in the growing oocytes of most animals, except mammals. They were first described by Walther Flemming and Ruckert in 1882. Lampbrush chromosomes of tailed and tailless amphibians, birds and insects are described best of all. Chromosomes transform into the lampbrush form during the diplotene stage of meiotic prophase I due to an active transcription of many genes. They are highly extended meiotic half-bivalents, each consisting of 2 sister chromatids. Lampbrush chromosomes are clearly visible even in the light microscope, where they are seen to be organized into a series of chromomeres with large chromatin loops extended laterally. Continuous RNA transcription is required to maintain typical chromomere-loop structure of lampbrush chromosomes. Inhibition of transcription leads to retraction of lateral loops into chromomeres and chromosome condensation.

<span class="mw-page-title-main">Bivalent (genetics)</span> One pair of homologous chromosomes in a tetrad

In cellular biology, a bivalent is one pair of chromosomes in a tetrad. A tetrad is the association of a pair of homologous chromosomes physically held together by at least one DNA crossover. This physical attachment allows for alignment and segregation of the homologous chromosomes in the first meiotic division. In most organisms, each replicated chromosome elicits formation of DNA double-strand breaks during the leptotene phase. These breaks are repaired by homologous recombination, that uses the homologous chromosome as a template for repair. The search for the homologous target, helped by numerous proteins collectively referred as the synaptonemal complex, cause the two homologs to pair, between the leptotene and the pachytene phases of meiosis I.

<span class="mw-page-title-main">Chiasma (genetics)</span> Point of contact among homologous chromosomes

In genetics, a chiasma is the point of contact, the physical link, between two (non-sister) chromatids belonging to homologous chromosomes. At a given chiasma, an exchange of genetic material can occur between both chromatids, what is called a chromosomal crossover, but this is much more frequent during meiosis than mitosis. In meiosis, absence of a chiasma generally results in improper chromosomal segregation and aneuploidy.

<span class="mw-page-title-main">Meiotic recombination checkpoint</span>

The meiotic recombination checkpoint monitors meiotic recombination during meiosis, and blocks the entry into metaphase I if recombination is not efficiently processed.

The leptotene stage, also known as leptonema, is the first of five substages of prophase I during meiosis, the specialized cell division that reduces the chromosome number by half to produce haploid gametes in sexually reproducing organisms.

<span class="mw-page-title-main">SMC1B</span> Protein-coding gene in the species Homo sapiens

Structural maintenance of chromosomes protein 1B (SMC-1B) is a protein that in humans is encoded by the SMC1B gene. SMC proteins engage in chromosome organization and can be broken into 3 groups based on function which are cohesins, condensins, and DNA repair. SMC-1B belongs to a family of proteins required for chromatid cohesion and DNA recombination during meiosis and mitosis. SMC1B protein appears to participate with other cohesins REC8, STAG3 and SMC3 in sister-chromatid cohesion throughout the whole meiotic process in human oocytes.

<span class="mw-page-title-main">Nuclear organization</span> Spatial distribution of chromatin within a cell nucleus

Nuclear organization refers to the spatial organization and dynamics of chromatin within a cell nucleus during interphase. There are many different levels and scales of nuclear organisation.

References

  1. Mosby (2016-04-29). Mosby's Medical Dictionary - E-Book. Elsevier Health Sciences. pp. 362–. ISBN   978-0-323-41426-5.
  2. 1 2 3 4 5 6 7 8 9 Macgregor, Herbert (September 7, 2012). "Chromomeres revisited". Chromosome Research. 20 (8): 911–924. doi: 10.1007/s10577-012-9310-3 . hdl: 10036/3748 . PMID   22956230 . Retrieved 2015-09-24.
  3. 1 2 3 4 Judd, Burke (September 1998). "Genes and chromomeres: A puzzle in three dimensions". Genetics. 150 (1): 1–9. doi:10.1093/genetics/150.1.1. PMC   1460313 . PMID   9725825 . Retrieved 2015-10-16.
  4. Sheval EV, Prusov AN, Kireev II, Fais D, Polyakov VY (2002). "Organization of higher-level chromatin structures (chromomere, chromonema and chromatin block) examined using visible light-induced chromatin photo-stabilization". Cell Biol. Int. 26 (7): 579–91. doi:10.1006/cbir.2002.0879. PMID   12127937. S2CID   39592180.
  5. 1 2 3 Gaginskaya E, Kulikova T, Krasikova A (2009). "Avian lampbrush chromosomes: a powerful tool for exploration of genome expression". Cytogenet. Genome Res. 124 (3–4): 251–67. doi:10.1159/000218130. PMID   19556778. S2CID   25404822.
  6. 1 2 Morgan, Garry (December 2012). "Association of modified cytosines and the methylated DNA-binding protein MeCP2 with distinctive structural domains of lampbrush chromatin". Chromosome Research. 20 (8): 925–42. doi:10.1007/s10577-012-9324-x. PMC   3565088 . PMID   23149574.