Condensin

Last updated
Figure 1. An interphase nucleus (left) and a set of mitotic chromosomes (right) from human tissue culture cells. Bar, 10 mm. Condensation1.png
Figure 1. An interphase nucleus (left) and a set of mitotic chromosomes (right) from human tissue culture cells. Bar, 10 μm.

Condensins are large protein complexes that play a central role in chromosome condensation and segregation during mitosis and meiosis (Figure 1). [1] [2] Their subunits were originally identified as major components of mitotic chromosomes assembled in Xenopus egg extracts. [3]

Contents

Subunit composition and phylogeny

Eukaryotic types

Figure 2. Three eukaryotic condensin complexes 3condensins 1E.png
Figure 2. Three eukaryotic condensin complexes

Many eukaryotic cells possess two different types of condensin complexes, known as condensin I and condensin II, each of which is composed of five subunits (Figure 2). [3] [4] Condensins I and II share the same pair of core subunits, SMC2 and SMC4, both belonging to a large family of chromosomal ATPases, known as SMC proteins (SMC stands for Structural Maintenance of Chromosomes). [5] [6] Each of the complexes contains a distinct set of non-SMC regulatory subunits (a kleisin subunit [7] and a pair of HEAT repeat subunits). [8] Both complexes are large, having a total molecular mass of 650-700 kDa.

The core subunits condensins (SMC2 and SMC4) are conserved among all eukaryotic species that have been studied to date. The non-SMC subunits unique to condensin I are also conserved among eukaryotes, but the occurrence of the non-SMC subunits unique to condensin II is highly variable among species.

The following table summarizes the names of SMC complex subunits in representative eukaryotic model organisms.

ComplexSubunit Vertebrate D. melanogaster C. elegans S. cerevisiae S. pombe A. thaliana T. thermophila
condensin I & II SMC2 ATPase CAP-E/ SMC2 Smc2MIX-1Smc2Cut14CAP-E1 & -E2Smc2
SMC4 ATPase CAP-C/ SMC4 Smc4/ GluonSMC-4Smc4Cut3CAP-CSmc4
condensin Ikleisin CAP-H CAP-H/ BarrenDPY-26Brn1Cnd2CAP-HCph1,2,3,4 & 5
HEAT-IA CAP-D2 CAP-D2DPY-28Ycs4Cnd1CAP-D2Cpd1 & 2
HEAT-IB CAP-G CAP-GCAPG-1Ycg1Cnd3CAP-GCpg1
condensin IIkleisin CAP-H2 CAP-H2KLE-2--CAP-H2/ HEB2-
HEAT-IIA CAP-D3 CAP-D3HCP-6--CAP-D3-
HEAT-IIB CAP-G2 -CAP-G2--CAP-G2/ HEB1-
condensin I DC SMC4 variant --DPY-27----

Condensin is one of the three major SMC protein complexes found in eukaryotes. The other two are: cohesin , which is involved in sister chromatid cohesion and interphase chromosome organization; and the SMC5/6 complex, which functions in DNA repair and chromosome segregation. [5] [6]

Prokaryotic types

Figure 3. Prokaryotic condensin-like complexes Bacterial SMCs 1.png
Figure 3. Prokaryotic condensin-like complexes

SMC-ScpAB: Condensin-like protein complexes also exist in prokaryotes, where they contribute to the organization and segregation of chromosomes (nucleoids). The best-studied example is the SMC–ScpAB complex (Figure 3, left), [19] which is considered the evolutionary ancestor of the eukaryotic condensin complexes. Compared to its eukaryotic counterparts, SMC–ScpAB has a simpler architecture. For instance, while eukaryotic condensins contain an SMC heterodimer, prokaryotic SMC proteins form a homodimer. Among the regulatory subunits, ScpA belongs to the kleisin family, [7] suggesting that the basic SMC–kleisin trimeric structure is conserved across prokaryotes and eukaryotes. By contrast, ScpB is classified as a member of the kite (Kleisin Interacting Tandem Elements) family, [20] which is structurally distinct from the HEAT-repeat subunits found in eukaryotic condensins. [8] [21]

MukBEF: While most bacteria and archaea possess the SMC–ScpAB complex, a subset of gammaproteobacteria, including Escherichia coli, instead have a distinct SMC complex known as MukBEF. [22] MukBEF forms a "dimer-of-dimers" through dimerization mediated by the kleisin subunit MukF (Figure 3, center). The third subunit, MukE, belongs to the kite family. Although sequence similarity between the subunits of MukBEF and those of SMC–ScpAB is low, their overall molecular architecture observed by electron microscopy [23] and phenotypic defects in mutants [24] [25] suggest that the two are functional homologs. As such, they are often collectively referred to as prokaryotic condensins.

MksBEF/Wadjet: More recently, a third type of bacterial SMC complex (called MksBEF), structurally similar to MukBEF, has been reported. [26] Pseudomonas aeruginosa have both SMC–ScpAB and MksBEF, which contribute to chromosome organization and segregation through distinct mechanisms. [27] In contrast, in Corynebacterium glutamicum, SMC–ScpAB is responsible for chromosome architecture and segregation, whereas MksBEF, together with the nuclease subunit MksG, is specialized for plasmid defense. [28] [29] The MksBEFG complex is orthologous to the JetABCD complex in Bacillus cereus [30] [31] and the EptABCD complex in Mycobacterium smegmatis . [32] These complexes, which serve a common function in plasmid defense, are collectively referred to as the Wadjet complexes (Figure 3, right).

The following table summarizes the names of SMC complex subunits in representative prokaryotic model organisms.

ComplexSubunit B. subtilis C. crescentus E.coli P. aeruginosa C. glutamicum B. cereus
SMC-ScpAB SMC ATPase SMCSMC-SMCSMCSMC
kleisinScpAScpA-ScpAScpAScpA
kiteScpBScpB-ScpBScpBScpB
MukBEF SMC ATPase --MukB---
kleisin--MukF---
kite--MukE---
MksBEF & Wadjet SMC ATPase ---MksBMksBJetC
kleisin---MksFMksFJetA
kite---MksEMksEJetB
nuclease----MksGJetD

Molecular structures

Figure 4. Basic structure of a condensin complex SMCfolding 2E'.png
Figure 4. Basic structure of a condensin complex

SMC dimers that act as the core subunits of condensins display a highly characteristic V-shape, each arm of which is composed of anti-parallel coiled-coils (Figure 4; see SMC proteins for details). [23] [33] The length of each coiled-coil arm reaches ~50 nm, which corresponds to the length of ~150 bp of double-stranded DNA (dsDNA). On the other hand, fast-speed atomic force microscopy has demonstrated that the arms of an SMC dimer is far more flexible than was expected. [34]

The formation of a condensin or condensin-like complex involves the association of an SMC dimer with non-SMC subunits (Figure 4). First, the N-terminal domain of the kleisin subunit binds to the neck region (a segment of the coiled coil near the head domain) of one SMC protein, while its C-terminal domain binds to the cap region (part of the head domain) of the other SMC subunit. These interactions result in the formation of a asymmetric ring-like architecture. Finally, two HEAT-repeat subunits (or two kite subunits depending on the complex) associate with the central region of the kleisin, completing the assembly of the holo-complex. MukBEF and Wadjet form higher-order assemblies through dimerization mediated by their kleisin subunits, a configuration often referred to as a "dimer-of-dimers" (Figure 3).

Structural information on individual complexes or their subcomplexes has been reported as follows:

Molecular activities

DNA compaction

Among the various molecular activities attributed to condensins, perhaps the most intuitive is its ability to compact DNA by folding it, thereby reducing its effective length. Indeed, an early single-molecule experiment using magnetic tweezers have shown that condensin I purified from Xenopus egg metaphase extracts actively shortens the length of DNA in an ATP hydrolysis-dependent manner, and this process can be observed in real time. [51] More recently, a comparable yet less dynamic compaction process mediated by budding yeast condensin was observed in the same experimental setup [52] Furthermore, optical tweezers–based assays combining single-molecule DNA manipulation with Xenopus egg extracts have revealed that, among the multiple DNA-compacting activities present in mitotic extracts, condensins make the dominant contribution. [53]

DNA supercoiling

Early studies using condensin I purified from Xenopus egg extracts demonstrated that the complex introduces positive supercoils into double-stranded DNA in an ATP hydrolysis–dependent manner, in the presence of type I topoisomerases. [54] Although this activity is often described as positive DNA supercoiling, it differs fundamentally from that of topoisomerases, since condensin I lacks DNA cleavage and re-ligation activity. Similar activities have also been observed with condensin complexes from nematodes and budding yeast. [55] [56] Furthermore, a modified assay combined with a type II topoisomerase has shown that Xenopus condensin I can generate "two oriented" supercoils in an ATP hydrolysis-dependent manner. [57] These activities are stimulated by Cdk1-mediated phosphorylation in vitro, suggesting that they may constitute an essential mechanism underlying mitotic chromosome condensation. [57] [58] Through this supercoiling activity, condensin may not only facilitate chromatin compaction but also promote the resolution and separation of sister chromatids by aiding the action of topoisomerase II. [59]

DNA loop extrusion

Among the various biochemical activities of condensins, loop extrusion has recently attracted the most attention. The concept of loop extrusion, where condensins actively "extrude" DNA to form loops, was first proposed theoretically and later supported by computer simulations. [60] Experimentally, budding yeast condensin was shown to translocate along double-stranded DNA in an ATP hydrolysis–dependent manner. [61] This was soon followed by direct visualization of loop extrusion, in which condensin extrudes and enlarges DNA loops over time. [61] Furthermore, condensin has been shown to bypass other condensin complexes upon collision on the same DNA molecule, [62] and even traverse large obstacles significantly exceeding its own size. [63]

The molecular mechanism underlying loop extrusion by condensins is an active area of investigation, with insights emerging from structural studies as well. [64] [65] Current models suggest that multiple condensin subunits interact with DNA in a coordinated manner, tightly coupled to the ATPase cycle of the SMC core subunits. [44] [46] [49] These interactions are thought to be mechanistically intricate and highly dynamic. Some evidence also points to a potential link between condensin-mediated loop extrusion and supercoiling, [66] [67] [68] although the exact mechanism of this link remains unclear. Moreover, whether and how mitosis-specific phosphorylation of condensin subunits modulates loop extrusion activity has yet to be fully elucidated.

DNA loop capture

Although accumulating evidence supports the loop extrusion model, direct evidence for its occurrence in vivo remains lacking. As an alternative, a mechanism termed "loop capture" (or "diffusion capture") has been proposed. [69] [70] [71] In this model, a condensin complex initially binds one segment of DNA and then captures a second DNA segment that comes into close proximity along the same DNA molecule, thereby forming a DNA loop. Unlike loop extrusion, loop capture does not require active translocation along DNA; instead, loops form through thermodynamic fluctuations. Loop capture and loop extrusion may not be necessarily mutually exclusive and may function in parallel within cells to promote DNA loop formation and expansion.

Chromosome assembly and reconstitution

The supercoiling and loop extrusion activities of condensin have been primarily demonstrated using experiments with naked DNA as the substrate. To investigate condensin function under more physiological conditions, a powerful in vitro assay using Xenopus egg extracts has been in use. [3] In this system, metaphase extracts prepared from unfertilized Xenopus eggs are used to recapitulate mitotic chromosome assembly in a test tube. By immunodepleting endogenous condensin from extracts and supplementing them with wild-type or mutant recombinant condensin complexes, researchers can evaluate the contribution of specific subunits or mutations to chromosome assembly activity. This system has demonstrated that both ATP binding and hydrolysis by the SMC subunits of condensin I are essential for chromosome assembly. It also revealed that the antagonistic actions of the two HEAT-repeat subunits, as well as condensin–condensin interactions, are critical for the dynamic organization of chromosome axes. [72] [73] Moreover, linker histones have been shown to compete with condensins, thereby modulating chromosome morphology in this system. [74] Remarkably, even under nucleosome-depleted conditions, the extract is capable of assembling chromosome-like structures in a manner dependent on condensins and topoisomerase II. [75] This observation indicates that condensins possess biologically relevant activity on nucleosome-free DNA, further highlighting their central role in chromosome architecture beyond its interaction with chromatinized templates.

More recently, an in vitro chromosome reconstitution system using purified proteins has been developed, confirming the essential role of condensin I in chromosome assembly. [76] [77] In this system, chromosomes can be reconstituted from a simple substrate (sperm nuclei) by supplementing with only six purified components: core histones, three types of histone chaperones, topoisomerase II, and condensin I. For condensin I to exert its chromosome assembly activity in this reconstitution system, it must be phosphorylated by the mitotic kinase cyclin B-Cdk1. Among the essential histone chaperones identified, FACT (Facilitates Chromatin Transcription) transiently destabilizes and reassembles nucleosomes, thereby facilitating the folding of nucleosomal fibers by condensin I and topoisomerase II.

Condensin I vs condensin II

How similar or how different are the molecular activities of condensin I and condensin II? Both complexes share the same two SMC subunits (SMC2 and SMC4), but each has a distinct set of three non-SMC subunits (see Fig. 2). Subtle differences in the balance of these non-SMC subunits are thought to account for differences in loop formation speed [78] and chromosome assembly activity [72] [73] [79] [80] between the two complexes. Interestingly, experimental studies have shown that by introducing specific mutations, it is possible to convert condensin I into a complex with condensin II-like activity. Likewise, condensin II can be engineered to exhibit condensin I-like properties. [80]

Mathematical modeling and computer simulations

Several mathematical modeling and computer simulation studies of mitotic chromosome assembly, based on the molecular activities of condensins, have been reported. Representative ones include modeling based on loop extrusion, [60] loop capture, [69] a combination of looping and condensin-condensin interactions, [81] and bridging-induced attraction. [82]

Functions in chromosome assembly and segregation

Mitosis

Figure 5. Chromosome dynamics during mitosis in eukaryotes Resolution9E'.png
Figure 5. Chromosome dynamics during mitosis in eukaryotes
Figure 6. Distribution of condensin I (green) and condensin II (red) in human metaphase chromosomes. Bar, 1 mm. CondensinI&II.png
Figure 6. Distribution of condensin I (green) and condensin II (red) in human metaphase chromosomes. Bar, 1 μm.

In human tissue culture cells, the two condensin complexes are regulated differently during the mitotic cell cycle (Figure 5). [83] [84] Condensin II is present within the cell nucleus during interphase and participates in an early stage of chromosome condensation within the prophase nucleus. On the other hand, condensin I is present in the cytoplasm during interphase, and gains access to chromosomes only after the nuclear envelope breaks down (NEBD) at the end of prophase. During prometaphase and metaphase, condensin I and condensin II cooperate to assemble rod-shaped chromosomes, in which two sister chromatids are fully resolved.

Such differential dynamics of the two complexes is observed in Xenopus egg extracts, [85] mouse oocytes, [86] and neural stem cells, [87] indicating that it is part of a fundamental regulatory mechanism conserved among different organisms and cell types. Indeed, recent studies have shown that forced localization of condensin I to the interphase nucleus can lead to abnormal chromosome segregation during subsequent mitosis. [88] It is most likely that this mechanism ensures the ordered action of the two complexes, namely, condensin II first and condensin I later. [89]

On metaphase chromosomes, condensins I and II are both enriched in the central axis in a non-overlapping fashion (Figure 6). Depletion experiments in vivo [4] [87] [90] and immunodepletion experiments in Xenopus egg extracts [85] demonstrate that the two complexes have distinct functions in assembling metaphase chromosomes. Cells deficient in condensin functions are not arrested at a specific stage of cell cycle, displaying chromosome segregation defects (i.e., anaphase bridges) and progressing through abnormal cytokinesis. [91]

The requirement for condensin I and II in mitosis varies among species.

These species-specific differences offer valuable insights into the evolution of chromosome architecture and genome size (see also the section "Evolutionary implications"). The following table summarizes the requirement for condensin I and II during mitosis in representative eukaryotic model organisms.

species M. musculus D. melanogaster C. elegans S. cerevisiae S. pombe A. thaliana C. merolae
genome size~2,500 Mb140 Mb100 Mb12 Mb14 Mb125 Mb16 Mb
condensin Iessentialessential?essentialessentialessentialessential
condensin IIessentialnon-essentialessential--non-essentialnon-essential

It has recently become possible that cell cycle-dependent structural changes of chromosomes are monitored by a genomics-based method known as Hi-C (High-throughput chromosome conformation capture). [94] The impact of condensin deficiency on chromosome conformation has been addressed in budding yeast, [95] [96] fission yeast, [97] [98] and the chicken DT40 cells. [99] The outcome of these studies strongly supports the notion that condensins play crucial roles in mitotic chromosome assembly and that condensin I and II have distinct functions in this process. Moreover, quantitative imaging analyses allow researchers to count the number of condensin complexes present on human metaphase chromosomes. [100]

Meiosis

Condensins also play important roles in chromosome assembly and segregation in meiosis. Genetic studies have been reported in S. cerevisiae, [101] D. melanogaster, [102] [103] and C. elegans . [104] In mice, requirements for condensin subunits in meiosis have been addressed by antibody-mediated blocking experiments [86] and conditional gene knockout analyses. [105] In mammalian meiosis I, the functional contribution of condensin II appears bigger than that of condensin I. As has been shown in mitosis, [87] however, the two condensin complexes have both overlapping and non-overlapping functions, too, in meiosis. Unlike cohesin, no meiosis-specific subunits of condensins have been identified so far.

Chromosomal functions outside of mitosis or meiosis

Recent studies have shown that condensins participate in a wide variety of chromosome functions outside of mitosis or meiosis.

Regulation

Spatiotemporal regulation

Figure 7. Spatiotemporal regulation of condensins CellCycle(Evo)5E.png
Figure 7. Spatiotemporal regulation of condensins

Condensin activity is subject to spatiotemporal regulation during the cell cycle, although the specific regulatory patterns vary among species.

Regulation by post-translational modifications

Figure 8. Major targets of Cdk1-mediated phosphorylation are enriched within IDRs of the non-SMC subunits of human condensin I and II complexes Condensin IDRs E1.png
Figure 8. Major targets of Cdk1-mediated phosphorylation are enriched within IDRs of the non-SMC subunits of human condensin I and II complexes

Condensin subunits undergo various post-translational modifications (PTMs) in a cell cycle–dependent manner. [118] Among these, phosphorylation during mitosis is the most extensively studied. The primary phosphorylation motifs targeted by Cdk1, namely S/TP sequences, tend to be enriched in the intrinsically disordered regions (IDRs) located at the termini of condensin subunits. [119] However, the distribution of these motifs and their functional contributions to in vivo regulation vary significantly across species.

In addition to Cdk1, other kinases have been implicated in condensin regulation in several organisms. For condensin I, Aurora B kinase [126] [127] and Polo-like kinase (Polo) [56] have been shown to act as positive regulators, whereas Casein kinase 2 (CK2) acts as a negative regulator. [128] For condensin II, involvement of Polo [129] and the spindle checkpoint kinase Mps1 [130] has been suggested.

Regulation by Short Linear Motifs (SLiMs)

Recently, short amino acid sequences known as Short Linear Motifs (SLiMs) have gained attention as key regulators of condensin function.

These SLiM-mediated interactions are further regulated by phosphorylation of the motif itself or its surrounding regions.

Regulation by proteolysis

It has been reported that the CAP-H2 subunit of condensin II is degraded in D. melanogaster through the action of the SCFSlimb ubiquitin ligase. [137]

Relevance to diseases

It was demonstrated that MCPH1, one of the proteins responsible for human primary microcephaly, has the ability to negatively regulate condensin II. [134] In mcph1 patient cells, condensin II (but not condensin I) is hyperactivated, leading to premature chromosome condensation in G2 phase (i.e., before entering mitosis). [138] There is no evidence, however, that misregulation of condensin II is directly related to the etiology of mcph1 microcephaly. More recently, it has been reported that hypomorphic mutations in condensin I or II subunits cause microcephaly in humans. [139] In mice, hypomorphic mutations in condensin II subunits cause specific defects in T cell development, [140] leading to T cell lymphoma. [141] It is interesting to note that cell types with specialized cell division modes, such as neural stem cells and T cells, are particularly susceptible to mutations in condensin subunits.

Evolutionary implications

The presence of condensin-like complexes in prokaryotes [19] [22] suggests that the evolutionary origin of condensins predates that of histones.

Figure 9. Evolution of eukayotic condensins: SMC , canonical SMC; SMC , non-canonical SMC; SMC , ancestor of SMC1 & SMC4; SMC , ancestor of SMC2 & SMC3; SMC5 , ancestor of SMC5 & SMC6 SMC Evo 7E.png
Figure 9. Evolution of eukayotic condensins: SMC , canonical SMC; SMC , non-canonical SMC; SMC , ancestor of SMC1 & SMC4; SMC , ancestor of SMC2 & SMC3; SMC5 , ancestor of SMC5 & SMC6

The proposed evolutionary scenario for eukaryotic condensins is as follows (Figure 9): [142] [143]

  1. In the archaeal ancestor of eukaryotes, a gene duplication event gave rise to a non-canonical SMC from a canonical SMC. This non-canonical SMC later evolved into the ancestral form of the eukaryotic SMC5/6 complex.
  2. In the early stages of eukaryogenesis, a duplication of the canonical SMC, accompanied by the replacement of KITEs with HEATs, gave rise to the common ancestor of cohesin and condensin complexes.
  3. A second duplication of SMC subsequently produced the distinct ancestral complexes of cohesin and condensin.
  4. In the ancestor of condensin, a duplication of non-SMCs led to the emergence of two distinct complexes, condensin I and condensin II.
  5. The last eukaryotic common ancestor (LECA) is thought to have possessed both condensin I and condensin II. During subsequent evolution, however, some lineages lost part or all of the non-SMC subunits specific to condensin II (see the section of Subunit composition and phylogeny).

Then how are the two condensin complexes in eukaryotic cells functionally specialized? As discussed above, the relative contribution of condensins I and II to mitosis varies among different organisms. They play equally important roles in mammalian mitosis, whereas condensin I has a predominant role over condensin II in many other species. In those species, condensin II might have been adapted for various non-essential functions other than mitosis. [92] [93] Although there is no apparent relationship between the occurrence of condensin II and the size of genomes, it seems that the functional contribution of condensin II becomes big as the genome size increases. [15] [87] A recent, comprehensive Hi-C study argues from an evolutionary point of view that condensin II acts as a determinant that converts post-mitotic Rabl configurations into interphase chromosome territories. [144] The relative contribution of the two condensin complexes to mitotic chromosome architecture also change during development, making an impact on the morphology of mitotic chromosomes. [85] Thus, the balancing act of condensins I and II is apparently fine-tuned in both evolution and development.

See also

References

  1. Hirano T (2016). "Condensin-based chromosome organization from bacteria to vertebrates". Cell. 164 (5): 847–857. doi: 10.1016/j.cell.2016.01.033 . PMID   26919425.
  2. Kalitsis P, Zhang T, Marshall KM, Nielsen CF, Hudson DF (2017). "Condensin, master organizer of the genome". Chromosome Res. 25 (1): 61–76. doi:10.1007/s10577-017-9553-0. PMID   28181049. S2CID   28241964.
  3. 1 2 3 Hirano T, Kobayashi R, Hirano M (1997). "Condensins, chromosome condensation complex containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein". Cell. 89 (4): 511–21. doi: 10.1016/S0092-8674(00)80233-0 . PMID   9160743. S2CID   15061740.
  4. 1 2 Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003). "Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells". Cell. 115 (1): 109–21. doi: 10.1016/s0092-8674(03)00724-4 . PMID   14532007. S2CID   18811084.
  5. 1 2 Uhlmann F (2016). "SMC complexes: from DNA to chromosomes". Nat. Rev. Mol. Cell Biol. 17 (7): 399–412. doi:10.1038/nrm.2016.30. PMID   27075410. S2CID   20398243.
  6. 1 2 Yatskevich S, Rhodes J, Nasmyth K (2019). "Organization of chromosomal DNA by SMC complexes". Annu. Rev. Genet. 53: 445–482. doi: 10.1146/annurev-genet-112618-043633 . PMID   31577909.
  7. 1 2 Schleiffer A, Kaitna S, Maurer-Stroh S, Glotzer M, Nasmyth K, Eisenhaber F (2003). "Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners". Mol. Cell. 11 (3): 571–5. doi: 10.1016/S1097-2765(03)00108-4 . PMID   12667442.
  8. 1 2 Neuwald AF, Hirano T (2000). "HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions". Genome Res. 10 (10): 1445–52. doi:10.1101/gr.147400. PMC   310966 . PMID   11042144.
  9. Herzog S, Nagarkar Jaiswal S, Urban E, Riemer A, Fischer S, Heidmann SK (2013). "Functional dissection of the Drosophila melanogaster condensin subunit Cap-G reveals its exclusive association with condensin I". PLOS Genet. 9 (4) e1003463. doi: 10.1371/journal.pgen.1003463 . PMC   3630105 . PMID   23637630.
  10. King, Thomas D; Leonard, Christopher J; Cooper, Jacob C; Nguyen, Son; Joyce, Eric F; Phadnis, Nitin; Takahashi, Aya (October 2019). "Recurrent Losses and Rapid Evolution of the Condensin II Complex in Insects". Molecular Biology and Evolution. 36 (10): 2195–2204. doi:10.1093/molbev/msz140. PMC   6759200 . PMID   31270536.
  11. 1 2 Csankovszki G, Collette K, Spahl K, Carey J, Snyder M, Petty E, Patel U, Tabuchi T, Liu H, McLeod I, Thompson J, Sarkeshik A, Yates J, Meyer BJ, Hagstrom K (2009). "Three distinct condensin complexes control C. elegans chromosome dynamics". Curr. Biol. 19 (1): 9–19. Bibcode:2009CBio...19....9C. doi:10.1016/j.cub.2008.12.006. PMC   2682549 . PMID   19119011.
  12. 1 2 Das M, Semple JI, Haemmerli A, Volodkina V, Scotton J, Gitchev T, Annan A, Campos J, Statzer C, Dakhovnik A, Ewald CY, Mozziconacci J, Meister P (2024). "Condensin I folds the Caenorhabditis elegans genome". Nat. Genet. 56 (8): 1737–1749. doi:10.1038/s41588-024-01832-5. PMID   39039278.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. 1 2 3 4 Sutani T, Yuasa T, Tomonaga T, Dohmae N, Takio K, Yanagida M (1999). "Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4". Genes Dev. 13 (17): 2271–83. doi:10.1101/gad.13.17.2271. PMC   316991 . PMID   10485849.
  14. 1 2 Freeman L, Aragon-Alcaide L, Strunnikov A (2000). "The condensin complex governs chromosome condensation and mitotic transmission of rDNA". J. Cell Biol. 149 (4): 811–824. doi:10.1083/jcb.149.4.811. PMC   2174567 . PMID   10811823.
  15. 1 2 3 Fujiwara T, Tanaka K, Kuroiwa T, Hirano T (2013). "Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive red alga Cyanidioschyzon merolae". Mol. Biol. Cell. 24 (16): 2515–27. doi:10.1091/mbc.E13-04-0208. PMC   3744952 . PMID   23783031.
  16. Siddiqui NU, Stronghill PE, Dengler RE, Hasenkampf CA, Riggs CD (2003). "Mutations in Arabidopsis condensin genes disrupt embryogenesis, meristem organization and segregation of homologous chromosomes during meiosis". Development. 130 (14): 3283–3295. doi:10.1242/dev.00542. PMID   12783798.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. Howard-Till R, Loidl J (2018). "Condensins promote chromosome individualization and segregation during mitosis, meiosis, and amitosis in Tetrahymena thermophila". Mol. Biol. Cell. 29 (4): 466–478. doi:10.1091/mbc.E17-07-0451. PMC   6014175 . PMID   29237819.
  18. Howard-Till, Rachel; Tian, Miao; Loidl, Josef; Cohen-Fix, Orna (15 May 2019). "A specialized condensin complex participates in somatic nuclear maturation in". Molecular Biology of the Cell. 30 (11): 1326–38. doi:10.1091/mbc.E18-08-0487. PMC   6724606 . PMID   30893010.
  19. 1 2 Mascarenhas J, Soppa J, Strunnikov AV, Graumann PL (2002). "Cell cycle-dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in Bacillus subtilis that interact with SMC protein". EMBO J. 21 (12): 3108–18. doi:10.1093/emboj/cdf314. PMC   126067 . PMID   12065423.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. Palecek JJ, Gruber S (2015). "Kite proteins: a superfamily of SMC/kleisin partners conserved across Bacteria, Archaea, and Eukaryotes". Structure. 23 (12): 2183–2190. doi: 10.1016/j.str.2015.10.004 . PMID   26585514.
  21. Yoshimura SH, Hirano T (2016). "HEAT repeats - versatile arrays of amphiphilic helices working in crowded environments?". J. Cell Sci. 129 (21): 3963–3970. doi:10.1242/jcs.185710. PMID   27802131.
  22. 1 2 Yamazoe M, Onogi T, Sunako Y, Niki H, Yamanaka K, Ichimura T, Hiraga S (1999). "Complex formation of MukB, MukE and MukF proteins involved in chromosome partitioning in Escherichia coli". EMBO J. 18 (21): 5873–84. doi:10.1093/emboj/18.21.5873. PMC   1171653 . PMID   10545099.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. 1 2 Melby TE, Ciampaglio CN, Briscoe G, Erickson HP (1998). "The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge". J. Cell Biol. 142 (6): 1595–1604. doi:10.1083/jcb.142.6.1595. PMC   2141774 . PMID   9744887.
  24. Niki H, Jaffé A, Imamura R, Ogura T, Hiraga S (1991). "The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli". EMBO J. 10 (1): 183–193. doi:10.1002/j.1460-2075.1991.tb07935.x. PMC   452628 . PMID   1989883.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. Britton RA, Lin DC, Grossman AD (1998). "Characterization of a prokaryotic SMC protein involved in chromosome partitioning". Genes Dev. 12 (9): 1254–1259. doi:10.1101/gad.12.9.1254. PMC   316777 . PMID   9573042.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. Petrushenko ZM, She W, Rybenkov VV (2011). "A new family of bacterial condensins". Mol. Microbiol. 81 (4): 881–896. doi:10.1111/j.1365-2958.2011.07763.x. PMC   3179180 . PMID   21752107.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. Lioy VS, Junier I, Lagage V, Vallet I, Boccard F (2020). "Distinct Activities of Bacterial Condensins for Chromosome Management in Pseudomonas aeruginosa". Cell Rep. 33 (5) 108344. doi:10.1016/j.celrep.2020.108344. PMID   33147461.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. Böhm K, Giacomelli G, Schmidt A, Imhof A, Koszul R, Marbouty M, Bramkamp M (2020). "Chromosome organization by a conserved condensin-ParB system in the actinobacterium Corynebacterium glutamicum". Nat Commun. 11 (1): 1485. Bibcode:2020NatCo..11.1485B. doi:10.1038/s41467-020-15238-4. PMC   7083940 . PMID   32198399.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. Weiß M, Giacomelli G, Assaya MB, Grundt F, Haouz A, Peng F, Petrella S, Wehenkel AM, Bramkamp M (2023). "The MksG nuclease is the executing part of the bacterial plasmid defense system MksBEFG". Nucl Acids Res. 51 (7): 3288–3306. doi:10.1093/nar/gkad130. PMC   10123090 . PMID   36881760.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. Deep A, Gu Y, Gao YQ, Ego KM, Herzik MA Jr, Zhou H, Corbett KD (2022). "The SMC-family Wadjet complex protects bacteria from plasmid transformation by recognition and cleavage of closed-circular DNA". Mol Cell. 82 (21): 4145–4159.e7. doi:10.1016/j.molcel.2022.09.008. PMC   9637719 . PMID   36206765.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. 1 2 Liu HW, Roisné-Hamelin F, Beckert B, Li Y, Myasnikov A, Gruber S (2022). "DNA-measuring Wadjet SMC ATPases restrict smaller circular plasmids by DNA cleavage". Mol Cell. 82 (24): 4727–4740.e6. doi: 10.1016/j.molcel.2022.11.015 . PMID   36525956.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. Panas MW, Jain P, Yang H, Mitra S, Biswas D, Wattam AR, Letvin NL, Jacobs WR Jr (2014). "Noncanonical SMC protein in Mycobacterium smegmatis restricts maintenance of Mycobacterium fortuitum plasmids". Proc Natl Acad Sci USA. 111 (37): 13264–13271. Bibcode:2014PNAS..11113264P. doi: 10.1073/pnas.1414207111 . PMC   4169951 . PMID   25197070.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. Anderson DE, Losada A, Erickson HP, Hirano T (2002). "Condensin and cohesin display different arm conformations with characteristic hinge angles". J. Cell Biol. 156 (6): 419–424. doi:10.1083/jcb.200111002. PMC   2173330 . PMID   11815634.
  34. Eeftens JM, Katan AJ, Kschonsak M, Hassler M, de Wilde L, Dief EM, Haering CH, Dekker C (2016). "Condensin Smc2-Smc4 dimers are flexible and dynamic". Cell Rep. 14 (8): 1813–8. doi:10.1016/j.celrep.2016.01.063. PMC   4785793 . PMID   26904946.
  35. 1 2 Bürmann F, Shin HC, Basquin J, Soh YM, Giménez-Oya V, Kim YG, Oh BH, Gruber S (2013). "An asymmetric SMC-kleisin bridge in prokaryotic condensin". Nat. Struct. Mol. Biol. 20 (3): 371–9. doi:10.1038/nsmb.2488. PMID   23353789. S2CID   21584205.
  36. Kamada K, Miyata M, Hirano T (2013). "Molecular basis of SMC ATPase activation: role of internal structural changes of the regulatory subcomplex ScpAB". Structure. 21 (4): 581–594. doi: 10.1016/j.str.2013.02.016 . PMID   23541893.
  37. Fennell-Fezzie R, Gradia SD, Akey D, Berger JM (2005). "The MukF subunit of Escherichia coli condensin: architecture and functional relationship to kleisins". EMBO J. 24 (11): 1921–30. doi:10.1038/sj.emboj.7600680. PMC   1142612 . PMID   15902272.
  38. Woo JS, Lim JH, Shin HC, Suh MK, Ku B, Lee KH, Joo K, Robinson H, Lee J, Park SY, Ha NC, Oh BH (2009). "Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions". Cell. 136 (1): 85–96. doi: 10.1016/j.cell.2008.10.050 . PMID   19135891. S2CID   4608756.
  39. Bürmann F, Funke LFH, Chin JW, Löwe J (2021). "Cryo-EM structure of MukBEF reveals DNA loop entrapment at chromosomal unloading sites". Mol Cell. 81 (23): 4891–4906.e8. doi:10.1016/j.molcel.2021.10.011. PMC   8669397 . PMID   34739874.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. Bürmann F, Clifton B, Koekemoer S, Wilkinson OJ, Kimanius D, Dillingham MS, Löwe J (2025). "Mechanism of DNA capture by the MukBEF SMC complex and its inhibition by a viral DNA mimic". Cell. 188 (9): 2465–2479.e14. doi: 10.1016/j.cell.2025.02.032 . PMC   7617805 . PMID   40168993.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  41. Roisné-Hamelin F, Liu HW, Taschner M, Li Y, Gruber S (2024). "Structural basis for plasmid restriction by SMC JET nuclease". Mol Cell. 84 (5): 883–896.e7. doi: 10.1016/j.molcel.2024.01.009 . PMID   38309275.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  42. Griese JJ, Witte G, Hopfner KP (2010). "Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins". Nucleic Acids Res. 38 (10): 3454–65. doi:10.1093/nar/gkq038. PMC   2879519 . PMID   20139420.
  43. Soh Y, Bürmann F, Shin H, Oda T, Jin KS, Toseland CP, Kim C, Lee H, Kim SJ, Kong M, Durand-Diebold M, Kim Y, Kim HM, Lee NK, Sato M, Oh B, Gruber S (2015). "Molecular basis for SMC rod formation and its dissolution upon DNA binding". Mol. Cell. 57 (2): 290–303. doi:10.1016/j.molcel.2014.11.023. PMC   4306524 . PMID   25557547.
  44. 1 2 Kschonsak M, Merkel F, Bisht S, Metz J, Rybin V, Hassler M, Haering CH (2017). "Structural basis for a safety-belt mechanism that anchors condensin to chromosomes". Cell. 171 (3): 588–600.e24. doi:10.1016/j.cell.2017.09.008. PMC   5651216 . PMID   28988770.
  45. Hara, Kodai; Kinoshita, Kazuhisa; Migita, Tomoko; Murakami, Kei; Shimizu, Kenichiro; Takeuchi, Kozo; Hirano, Tatsuya; Hashimoto, Hiroshi (12 March 2019). "Structural basis of HEAT-kleisin interactions in the human condensin I subcomplex". EMBO Reports. 20 (5). doi:10.15252/embr.201847183. PMC   6501013 . PMID   30858338.
  46. 1 2 Hassler M, Shaltiel IA, Kschonsak M, Simon B, Merkel F, Thärichen L, Bailey HJ, Macošek J, Bravo S, Metz J, Hennig J, Haering CH (2019). "Structural basis of an asymmetric condensin ATPase cycle". Mol Cell. 74 (6): 1175–1188.e24. doi:10.1016/j.molcel.2019.03.037. PMC   6591010 . PMID   31226277.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  47. Lee BG, Merkel F, Allegretti M, Hassler M, Cawood C, Lecomte L, O'Reilly FJ, Sinn LR, Gutierrez-Escribano P, Kschonsak M, Bravo S, Nakane T, Rappsilber J, Aragon L, Beck M, Löwe J, Haering CH (2020). "Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism". Nat Struct Mol Biol. 27 (8): 743–751. doi:10.1038/s41594-020-0457-x. PMC   7610691 . PMID   32661420.
  48. Lee BG, Rhodes J, Löwe J (2022). "Clamping of DNA shuts the condensin neck gate". Proc Natl Acad Sci USA. 119 (14) e2120006119. Bibcode:2022PNAS..11920006L. doi: 10.1073/pnas.2120006119 . PMC   9168836 . PMID   35349345.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  49. 1 2 Shaltiel IA, Datta S, Lecomte L, Hassler M, Kschonsak M, Bravo S, Stober C, Ormanns J, Eustermann S, Haering CH (2022). "A hold-and-feed mechanism drives directional DNA loop extrusion by condensin". Science. 376 (6597): 1087–1094. Bibcode:2022Sci...376.1087S. doi:10.1126/science.abm4012. PMID   35653469.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  50. Kong M, Cutts EE, Pan D, Beuron F, Kaliyappan T, Xue C, Morris EP, Musacchio A, Vannini A, Greene EC (2020). "Human Condensin I and II Drive Extensive ATP-Dependent Compaction of Nucleosome-Bound DNA". Mol Cell. 79 (1): 99–114.e9. doi:10.1016/j.molcel.2020.04.026. hdl: 21.11116/0000-0006-73C9-6 . PMC   7335352 . PMID   32445620.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  51. Strick TR, Kawaguchi T, Hirano T (2004). "Real-time detection of single-molecule DNA compaction by condensin I". Curr Biol. 14 (10): 874–880. Bibcode:2004CBio...14..874S. doi:10.1016/j.cub.2004.04.038. PMID   15186743.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  52. Eeftens JM, Bisht S, Kerssemakers J, Kschonsak M, Haering CH, Dekker C (2017). "Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism". EMBO J. 36 (23): 3448–3457. doi:10.15252/embj.201797596. PMC   5709735 . PMID   29118001.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  53. Sun M, Amiri H, Tong AB, Shintomi K, Hirano T, Bustamante C, Heald R (2023). "Monitoring the compaction of single DNA molecules in Xenopus egg extract in real time". Proc Natl Acad Sci USA. 120 (12) e2221309120. Bibcode:2023PNAS..12021309S. doi: 10.1073/pnas.2221309120 . PMC   10041109 . PMID   36917660.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  54. Kimura K, Hirano T (1997). "ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation". Cell. 90 (4): 625–634. doi: 10.1016/s0092-8674(00)80524-3 . PMID   9288743.
  55. Hagstrom KA1, Holmes VF, Cozzarelli NR, Meyer BJ (2002). "C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis". Genes Dev. 16 (6): 729–742. doi:10.1101/gad.968302. PMC   155363 . PMID   11914278.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  56. 1 2 St-Pierre J, Douziech M, Bazile F, Pascariu M, Bonneil E, Sauvé V, Ratsima H, D'Amours D (2009). "Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity". Mol Cell. 120 (Pt 7): 1245–1255. doi:10.1016/j.molcel.2009.04.013. PMID   19481522.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  57. 1 2 3 Kimura K, Rybenkov VV, Crisona NJ, Hirano T, Cozzarelli NR (1999). "13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation". Cell. 98 (2): 239–248. doi: 10.1016/s0092-8674(00)81018-1 . PMID   10428035.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  58. 1 2 Kimura K, Hirano M, Kobayashi R, Hirano T (1998). "Phosphorylation and activation of 13S condensin by Cdc2 in vitro". Science. 282 (5388): 487–490. Bibcode:1998Sci...282..487K. doi:10.1126/science.282.5388.487. PMID   9774278.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  59. Baxter J, Sen N, Martínez VL, De Carandini ME, Schvartzman JB, Diffley JF, Aragón L (2011). "Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes". Science. 331 (6022): 1328–1332. Bibcode:2011Sci...331.1328B. doi:10.1126/science.1201538. PMID   21393545.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  60. 1 2 Goloborodko A, Imakaev MV, Marko JF, Mirny L (2016). "Compaction and segregation of sister chromatids via active loop extrusion". eLife. 5 e14864. doi: 10.7554/eLife.14864 . PMC   4914367 . PMID   27192037.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  61. 1 2 Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC (2017). "The condensin complex is a mechanochemical motor that translocates along DNA". Science. 358 (6363): 672–676. Bibcode:2017Sci...358..672T. doi:10.1126/science.aan6516. PMC   5862036 . PMID   28882993.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  62. Kim E, Kerssemakers J, Shaltiel IA, Haering CH, Dekker C (2020). "DNA-loop extruding condensin complexes can traverse one another". Nature. 579 (7799): 438–442. Bibcode:2020Natur.579..438K. doi:10.1038/s41586-020-2067-5. PMID   32132705.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  63. Pradhan B, Barth R, Kim E, Davidson IF, Bauer B, van Laar T, Yang W, Ryu JK, van der Torre J, Peters JM, Dekker C (2022). "SMC complexes can traverse physical roadblocks bigger than their ring size". Cell Rep. 41 (3) 111491. doi:10.1016/j.celrep.2022.111491. PMID   36261017.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  64. Oldenkamp R, Rowland BD (2022). "A walk through the SMC cycle: From catching DNAs to shaping the genome". Mol Cell. 82 (9): 1616–1630. doi:10.1016/j.molcel.2022.04.006. PMID   35477004.
  65. Dekker C, Haering CH, Peters, JM, Rowland, BD (2023). "How do molecular motors fold the genome?". Science. 382 (6671): 646–648. Bibcode:2023Sci...382..646D. doi:10.1126/science.adi8308. PMID   37943927.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  66. Kim E, Gonzalez AM, Pradhan B, van der Torre J, Dekker C (2022). "Condensin-driven loop extrusion on supercoiled DNA". Nat Struct Mol Biol. 29 (7): 719–727. doi:10.1038/s41594-022-00802-x. PMID   35835864.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  67. Martínez-García B, Dyson S, Segura J, Ayats A, Cutts EE, Gutierrez-Escribano P, Aragón L, Roca J (2022). "Condensin pinches a short negatively supercoiled DNA loop during each round of ATP usage". EMBO J. 42 (3) e111913. doi:10.15252/embj.2022111913. PMC   9890231 . PMID   36533296.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  68. Janissen R, Barth R, Davidson IF, Peters JM, Dekker C (2024). "All eukaryotic SMC proteins induce a twist of −0.6 at each DNA loop extrusion step". Sci Adv. 10 (50) eadt1832. Bibcode:2024SciA...10.1832J. doi:10.1126/sciadv.adt1832. PMC   11641105 . PMID   39671477.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  69. 1 2 Gerguri T, Fu X, Kakui Y, Khatri BS, Barrington C, Bates PA, Uhlmann F (2021). "Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast". Nucl Acids Res. 49 (3): 1294–1312. doi:10.1093/nar/gkaa1270. PMC   7897502 . PMID   33434270.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  70. Tang M, Pobegalov G, Tanizawa H, Chen ZA, Rappsilber J, Molodtsov M, Noma KI, Uhlmann F (2023). "Establishment of dsDNA-dsDNA interactions by the condensin complex". Mol Cell. 83 (21): 3787–3800. doi:10.1016/j.molcel.2023.09.019. PMC   10842940 . PMID   37820734.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  71. Uhlmann F (2025). "A unified model for cohesin function in sister chromatid cohesion and chromatin loop formation". Mol Cell. 85 (6): 1058–1071. doi: 10.1016/j.molcel.2025.02.005 . PMID   40118039.
  72. 1 2 Kinoshita K, Kobayashi TJ, Hirano T (2015). "Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes". Dev Cell. 33 (1): 94–106. doi:10.1016/j.devcel.2015.01.034. PMID   25850674.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  73. 1 2 Kinoshita K, Tsubota Y, Tane S, Aizawa Y, Sakata R, Takeuchi K, Shintomi K, Nishiyama T, Hirano T (2022). "A loop extrusion-independent mechanism contributes to condensin I-mediated chromosome shaping". J Cell Biol. 221 (3) e202109016. doi:10.1083/jcb.202109016. PMC   8932526 . PMID   35045152.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  74. Choppakatla P, Dekker B, Cutts EE, Vannini A, Dekker J, Funabiki H (2021). "Linker histone H1.8 inhibits chromatin binding of condensins and DNA topoisomerase II to tune chromosome length and individualization". eLife. 10 e68918. doi: 10.7554/eLife.68918 . PMC   8416026 . PMID   34406118.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  75. Shintomi K, Inoue F, Watanabe H, Ohsumi K, Ohsugi M, Hirano T (2017). "Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts". Science. 356 (6344): 1284–1287. Bibcode:2017Sci...356.1284S. doi:10.1126/science.aam9702. PMID   28522692.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  76. 1 2 Shintomi K, Takahashi TS, Hirano T (2015). "Reconstitution of mitotic chromatids with a minimum set of purified factors". Nat Cell Biol. 17 (8): 1014–1023. doi:10.1038/ncb3187. PMID   26075356.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  77. Shintomi K, Hirano T (2021). "Guiding functions of the C-terminal domain of topoisomerase IIα advance mitotic chromosome assembly". Nat Commun. 12 (1): 2917. Bibcode:2021NatCo..12.2917S. doi:10.1038/s41467-021-23205-w. PMC   8131626 . PMID   34006877.
  78. Kong M, Cutts EE, Pan D, Beuron F, Kaliyappan T, Xue C, Morris EP, Musacchio A, Vannini A, Greene EC (2020). "Human condensin I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA". Mol. Cell. 79 (1): 99–114. doi:10.1016/j.molcel.2020.04.026. PMC   7335352 . PMID   32445620.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  79. 1 2 Yoshida MM, Kinoshita K, Aizawa Y, Tane S, Yamashita D, Shintomi K, Hirano T (2022). "Molecular dissection of condensin II-mediated chromosome assembly using in vitro assays". eLife. 11 e78984. doi: 10.7554/eLife.78984 . PMC   9433093 . PMID   35983835.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  80. 1 2 3 Yoshida MM, Kinoshita K, Shintomi K, Aizawa Y, Hirano T (2024). "Regulation of condensin II by self-suppression and release mechanisms". Mol Biol Cell. 35 (2): ar21. doi:10.1091/mbc.E23-10-0392. PMC   10881152 . PMID   38088875.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  81. Sakai, Yuji; Mochizuki, Atsushi; Kinoshita, Kazuhisa; Hirano, Tatsuya; Tachikawa, Masashi; Morozov, Alexandre V. (18 June 2018). "Modeling the functions of condensin in chromosome shaping and segregation". PLOS Computational Biology. 14 (6) e1006152. Bibcode:2018PLSCB..14E6152S. doi: 10.1371/journal.pcbi.1006152 . PMC   6005465 . PMID   29912867.
  82. Forte G, Boteva L, Conforto F, Gilbert N, Cook PR, Marenduzzo D (2024). "Bridging condensins mediate compaction of mitotic chromosomes". J Cell Biol. 223 (1) e202209113. doi:10.1083/jcb.202209113. PMC   10655892 . PMID   37976091.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  83. 1 2 Ono T, Fang Y, Spector DL, Hirano T (2004). "Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells". Mol. Biol. Cell. 15 (7): 3296–308. doi:10.1091/mbc.E04-03-0242. PMC   452584 . PMID   15146063.
  84. 1 2 Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM (2004). "Distinct functions of condensin I and II in mitotic chromosome assembly". J. Cell Sci. 117 (Pt 26): 6435–45. doi: 10.1242/jcs.01604 . PMID   15572404.
  85. 1 2 3 Shintomi K, Hirano T (2011). "The relative ratio of condensin I to II determines chromosome shapes". Genes Dev. 25 (14): 1464–9. doi:10.1101/gad.2060311. PMC   3143936 . PMID   21715560.
  86. 1 2 Lee J, Ogushi S, Saitou M, Hirano T (2011). "Condensins I and II are essential for construction of bivalent chromosomes in mouse oocytes". Mol. Biol. Cell. 22 (18): 3465–77. doi:10.1091/mbc.E11-05-0423. PMC   3172270 . PMID   21795393.
  87. 1 2 3 4 5 6 Nishide K, Hirano T (2014). "Overlapping and non-overlapping functions of condensins I and II in neural stem cell divisions". PLOS Genet. 10 (12) e1004847. doi: 10.1371/journal.pgen.1004847 . PMC   4256295 . PMID   25474630.
  88. Eykelenboom JK, Gierliński M, Yue Z, Tanaka TU (2025). "Nuclear exclusion of condensin I in prophase coordinates mitotic chromosome reorganization to ensure complete sister chromatid resolution". Curr Biol. 35 (7): 1562–1575e. Bibcode:2025CBio...35.1562E. doi: 10.1016/j.cub.2025.02.047 . PMID   40107266.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  89. Hirano T (2012). "Condensins: universal organizers of chromosomes with diverse functions". Genes Dev. 26 (4): 1659–78. doi:10.1101/gad.194746.112. PMC   3418584 . PMID   22855829.
  90. Green LC, Kalitsis P, Chang TM, Cipetic M, Kim JH, Marshall O, Turnbull L, Whitchurch CB, Vagnarelli P, Samejima K, Earnshaw WC, Choo KH, Hudson DF (2012). "Contrasting roles of condensin I and condensin II in mitotic chromosome formation". J. Cell Sci. 125 (Pt6): 1591–1604. doi:10.1242/jcs.097790. PMC   3336382 . PMID   22344259.
  91. Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC (2003). "Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes". Dev. Cell. 5 (2): 323–336. doi: 10.1016/s1534-5807(03)00199-0 . PMID   12919682.
  92. 1 2 3 Sakamoto T, Inui YT, Uraguchi S, Yoshizumi T, Matsunaga S, Mastui M, Umeda M, Fukui K, Fujiwara T (2011). "Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis". Plant Cell. 23 (9): 3533–46. Bibcode:2011PlanC..23.3533S. doi:10.1105/tpc.111.086314. PMC   3203421 . PMID   21917552.
  93. 1 2 3 Hartl TA, Smith HF, Bosco G (2008). "Chromosome alignment and transvection are antagonized by condensin II". Science. 322 (5906): 1384–7. Bibcode:2008Sci...322.1384H. doi:10.1126/science.1164216. PMID   19039137. S2CID   5154197.
  94. Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J (2013). "Organization of the mitotic chromosome". Science. 342 (6161): 948–953. Bibcode:2013Sci...342..948N. doi:10.1126/science.1236083. PMC   4040465 . PMID   24200812.
  95. Schalbetter SA, Goloborodko A, Fudenberg G, Belton JM, Miles C, Yu M, Dekker J, Mirny L, Baxter J (2017). "SMC complexes differentially compact mitotic chromosomes according to genomic context". Nat Cell Biol. 19 (9): 1071–80. doi:10.1038/ncb3594. PMC   5640152 . PMID   28825700.
  96. Lazar-Stefanita L, Scolari VF, Mercy G, Muller H, Guérin TM, Thierry A, Mozziconacci J, Koszul R (2017). "Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle". EMBO J. 36 (18): 2684–97. doi:10.15252/embj.201797342. PMC   5599795 . PMID   28729434.
  97. Kakui Y, Rabinowitz A, Barry DJ, Uhlmann F (2017). "Condensin-mediated remodeling of the mitotic chromatin landscape in fission yeast". Nat Genet. 49 (10): 1553–7. doi:10.1038/ng.3938. PMC   5621628 . PMID   28825727.
  98. Tanizawa H, Kim KD, Iwasaki O, Noma KI (2017). "Architectural alterations of the fission yeast genome during the cell cycle". Nat Struct Mol Biol. 24 (11): 965–976. doi:10.1038/nsmb.3482. PMC   5724045 . PMID   28991264.
  99. Gibcus, Johan H.; Samejima, Kumiko; Goloborodko, Anton; Samejima, Itaru; Naumova, Natalia; Nuebler, Johannes; Kanemaki, Masato T.; Xie, Linfeng; Paulson, James R.; Earnshaw, William C.; Mirny, Leonid A.; Dekker, Job (9 February 2018). "A pathway for mitotic chromosome formation". Science. 359 (6376) eaao6135. doi:10.1126/science.aao6135. PMC   5924687 . PMID   29348367.
  100. Walther, Nike; Hossain, M. Julius; Politi, Antonio Z.; Koch, Birgit; Kueblbeck, Moritz; Ødegård-Fougner, Øyvind; Lampe, Marko; Ellenberg, Jan (2 July 2018). "A quantitative map of human Condensins provides new insights into mitotic chromosome architecture". Journal of Cell Biology. 217 (7): 2309–28. doi:10.1083/jcb.201801048. PMC   6028534 . PMID   29632028.
  101. Yu HG, Koshland DE (2003). "Meiotic condensin is required for proper chromosome compaction, SC assembly, and resolution of recombination-dependent chromosome linkages". J. Cell Biol. 163 (5): 937–947. doi:10.1083/jcb.200308027. PMC   2173617 . PMID   14662740.
  102. Hartl TA, Sweeney SJ, Knepler PJ, Bosco G (2008). "Condensin II resolves chromosomal associations to enable anaphase I segregation in Drosophila male meiosis". PLOS Genet. 4 (10) e1000228. doi: 10.1371/journal.pgen.1000228 . PMC   2562520 . PMID   18927632.
  103. Resnick TD, Dej KJ, Xiang Y, Hawley RS, Ahn C, Orr-Weaver TL (2009). "Mutations in the chromosomal passenger complex and the condensin complex differentially affect synaptonemal complex disassembly and metaphase I configuration in Drosophila female meiosis". Genetics. 181 (3): 875–887. doi:10.1534/genetics.108.097741. PMC   2651061 . PMID   19104074.
  104. Chan RC, Severson AF, Meyer BJ (2004). "Condensin restructures chromosomes in preparation for meiotic divisions". J. Cell Biol. 167 (4): 613–625. doi:10.1083/jcb.200408061. PMC   2172564 . PMID   15557118.
  105. Houlard M, Godwin J, Metson J, Lee J, Hirano T, Nasmyth K (2015). "Condensin confers the longitudinal rigidity of chromosomes". Nat Cell Biol. 17 (6): 771–81. doi:10.1038/ncb3167. PMC   5207317 . PMID   25961503.
  106. Johzuka K, Terasawa M, Ogawa H, Ogawa T, Horiuchi T (2006). "Condensin loaded onto the replication fork barrier site in the rRNA gene repeats during S phase in a FOB1-dependent fashion to prevent contraction of a long repetitive array in Saccharomyces cerevisiae". Mol Cell Biol. 26 (6): 2226–36. doi:10.1128/MCB.26.6.2226-2236.2006. PMC   1430289 . PMID   16507999.
  107. Haeusler RA, Pratt-Hyatt M, Good PD, Gipson TA, Engelke DR (2008). "Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes". Genes Dev. 22 (16): 2204–14. doi:10.1101/gad.1675908. PMC   2518813 . PMID   18708579.
  108. Aono N, Sutani T, Tomonaga T, Mochida S, Yanagida M (2002). "Cnd2 has dual roles in mitotic condensation and interphase". Nature. 417 (6885): 197–202. Bibcode:2002Natur.417..197A. doi:10.1038/417197a. PMID   12000964. S2CID   4332524.
  109. Iwasaki O, Tanaka A, Tanizawa H, Grewal SI, Noma K (2010). "Centromeric localization of dispersed Pol III genes in fission yeast". Mol. Biol. Cell. 21 (2): 254–265. doi:10.1091/mbc.e09-09-0790. PMC   2808234 . PMID   19910488.
  110. Xu X, Nakazawa N, Yanagida M (2015). "Condensin HEAT subunits required for DNA repair, kinetochore/centromere function and ploidy maintenance in fission yeast". PLOS ONE. 10 (3) e0119347. Bibcode:2015PLoSO..1019347X. doi: 10.1371/journal.pone.0119347 . PMC   4357468 . PMID   25764183.
  111. Paul MR, Markowitz TE, Hochwagen A, Ercan S (2018). "Condensin depletion causes genome decompaction without altering the level of global gene expression in Saccharomyces cerevisiae". Genetics. 210 (1): 331–344. doi:10.1534/genetics.118.301217. PMC   6116964 . PMID   29970489.
  112. Hocquet C, Robellet X, Modolo L, Sun XM, Burny C, Cuylen-Haering S, Toselli E, Clauder-Münster S, Steinmetz L, Haering CH, Marguerat S, Bernard P (2018). "Condensin controls cellular RNA levels through the accurate segregation of chromosomes insteadof directly regulating transcription". eLife. 7 e38517. doi: 10.7554/eLife.38517 . PMC   6173581 . PMID   30230473.
  113. Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS, Ralston EJ, Uzawa S, Dekker J, Meyer BJ (2015). "Condensin-driven remodelling of X chromosome topology during dosage compensation". Nature. 523 (7559): 210–244. Bibcode:2015Natur.523..240C. doi:10.1038/nature14450. PMC   4498965 . PMID   26030525.
  114. Chao LF, Singh M, Thompson J, Yates JR 3rd, Hagstrom KA (2017). "An SMC-like protein binds and regulates Caenorhabditis elegans condensins". PLOS Genet. 13 (3) e1006614. doi: 10.1371/journal.pgen.1006614 . PMC   5373644 . PMID   28301465.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  115. Bauer CR, Hartl TA, Bosco G (2012). "Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes". PLOS Genet. 8 (8): e1002873. doi: 10.1371/journal.pgen.1002873 . PMC   3431300 . PMID   22956908.{{cite journal}}: CS1 maint: article number as page number (link)
  116. Hassan A, Araguas Rodriguez P, Heidmann SK, Walmsley EL, Aughey GN, Southall TD (2020). "Condensin I subunit Cap-G is essential for proper gene expression during the maturation of post-mitotic neurons". eLife. 9 e55159. doi: 10.7554/eLife.55159 . PMC   7170655 . PMID   32255428.
  117. Ono T, Yamashita D, Hirano T (2013). "Condensin II initiates sister chromatid resolution during S phase". J. Cell Biol. 200 (4): 429–441. doi:10.1083/jcb.201208008. PMC   3575537 . PMID   23401001.
  118. Dekker B, Dekker J (2022). "Regulation of the mitotic chromosome folding machines". Biochem J. 479 (20): 2153–73. doi:10.1042/BCJ20210140. PMC   9704520 . PMID   36268993.
  119. Bazile F, St-Pierre J, D'Amours D (2010). "Three-step model for condensin activation during mitotic chromosome condensation". Cell Cycle. 9 (16): 3243–55. doi: 10.4161/cc.9.16.12620 . PMID   20703077.
  120. Robellet X, Thattikota Y, Wang F, Wee TL, Pascariu M, Shankar S, Bonneil É, Brown CM, D'Amours D (2015). "A high-sensitivity phospho-switch triggered by Cdk1 governs chromosome morphogenesis during cell division". Genes Dev. 29 (4): 426–439. doi:10.1101/gad.253294.114. PMC   4335297 . PMID   25691469.
  121. Thadani R, Kamenz J, Heeger S, Muñoz S, Uhlmann F (2018). "Cell-Cycle Regulation of Dynamic Chromosome Association of the Condensin Complex". Cell Rep. 23 (8): 2308–17. doi:10.1016/j.celrep.2018.04.082. PMC   5986713 . PMID   29791843.
  122. Tane S, Shintomi K, Kinoshita K, Tsubota Y, Yoshida MM, Nishiyama T, Hirano T (2022). "Cell cycle-specific loading of condensin I is regulated by the N-terminal tail of its kleisin subunit". eLife. 11 e84694. doi: 10.7554/eLife.84694 . PMC   9797191 . PMID   36511239.
  123. Abe S, Nagasaka K, Hirayama Y, Kozuka-Hata H, Oyama M, Aoyagi Y, Obuse C, Hirota T (2011). "The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II". Genes Dev. 25 (8): 863–874. doi:10.1101/gad.2016411. PMC   3078710 . PMID   21498573.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  124. Bakhrebah M, Zhang T, Mann JR, Kalitsis P, Hudson DF (2015). "Disruption of a conserved CAP-D3 threonine alters condensin loading on mitotic chromosomes leading to chromosome hypercondensation". J Biol Chem. 290 (10): 6156–6167. doi: 10.1074/jbc.M114.627109 . PMC   4358255 . PMID   25605712.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  125. Yeong FM, Hombauer H, Wendt KS, Hirota T, Mudrak I, Mechtler K, Loregger T, Marchler-Bauer A, Tanaka K, Peters JM, Ogris E (2003). "Identification of a subunit of a novel Kleisin-beta/SMC complex as a potential substrate of protein phosphatase 2A". Curr Biol. 13 (23): 2058–2064. Bibcode:2003CBio...13.2058Y. doi:10.1016/j.cub.2003.10.032. PMID   14653995.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  126. Lipp JJ, Hirota T, Poser I, Peters JM (2007). "Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes". J Cell Sci. 120 (Pt 7): 1245–1255. doi:10.1242/jcs.03425. PMID   17356064.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  127. Nakazawa N, Mehrotra R, Ebe M, Yanagida M. (2011). "Condensin phosphorylated by the Aurora-B-like kinase Ark1 is continuously required until telophase in a mode distinct from Top2". J Cell Sci. 124 (Pt 11): 1795–1807. doi:10.1242/jcs.078733. PMID   21540296.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  128. Takemoto A, Kimura K, Yanagisawa J, Yokoyama S, Hanaoka F. (2006). "Negative regulation of condensin I by CK2-mediated phosphorylation". EMBO J. 25 (22): 5339–5348. doi:10.1038/sj.emboj.7601394. PMC   1636611 . PMID   17066080.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  129. Kim JH, Shim J, Ji MJ, Jung Y, Bong SM, Jang YJ, Yoon EK, Lee SJ, Kim KG, Kim YH, Lee C, Lee BI, Kim KT (2014). "The condensin component NCAPG2 regulates microtubule-kinetochore attachment through recruitment of Polo-like kinase 1 to kinetochores". Nat Commun. 5: 4588. Bibcode:2014NatCo...5.4588K. doi:10.1038/ncomms5588. PMID   25109385.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  130. Kagami Y, Nihira K, Wada S, Ono M, Honda M, Yoshida K (2014). "Mps1 phosphorylation of condensin II controls chromosome condensation at the onset of mitosis". J. Cell Biol. 205 (6): 781–790. doi:10.1083/jcb.201308172. PMC   4068140 . PMID   24934155.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  131. Wang M, Robertson D, Zou J, Spanos C, Rappsilber J, Marston AL (2024). "Molecular mechanism targeting condensin for chromosome condensation". EMBO J. 44 (3): 705–735. doi:10.1038/s44318-024-00336-6. PMC   11791182 . PMID   39690240.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  132. Tane S, Shintomi K, Kinoshita K, Tsubota Y, Yoshida MM, Nishiyama T, Hirano T (2022). "Cell cycle-specific loading of condensin I is regulated by the N-terminal tail of its kleisin subunit". eLife. 11 e84694. doi: 10.7554/eLife.84694 . PMC   9797191 . PMID   36511239.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  133. Cutts EE, Tetiker D, Kim E, Aragon L (2024). "Molecular mechanism of condensin I activation by KIF4A". EMBO J. 44 (3): 682–704. doi:10.1038/s44318-024-00340-w. PMC   11790958 . PMID   39690239.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  134. 1 2 Yamashita D, Shintomi K, Ono T, Gavvovidis I, Schindler D, Neitzel H, Trimborn M, Hirano T (2011). "MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II". J. Cell Biol. 194 (6): 841–854. doi:10.1083/jcb.201106141. PMC   3207293 . PMID   21911480.
  135. Houlard M, Cutts EE, Shamim MS, Godwin J, Weisz D, Presser Aiden A, Lieberman Aiden E, Schermelleh L, Vannini A, Nasmyth K (2021). "MCPH1 inhibits Condensin II during interphase by regulating its SMC2-Kleisin interface". eLife. 10 (2): 451–469. doi: 10.7554/eLife.73348 . PMC   8673838 . PMID   34850993.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  136. Borsellini A, Conti D, Cutts EE, Harris RJ, Walstein K, Graziadei A, Cecatiello V, Aarts TF, Xie R, Mazouzi A, Sen S, Hoencamp C, Pleuger R, Ghetti S, Oberste-Lehn L, Pan D, Bange T, Haarhuis JHI, Perrakis A, Brummelkamp TR, Rowland BD, Musacchio A, Vannini A (2025). "Condensin II activation by M18BP1". Mol Cell: S1097‑2765(25)00543‑X. doi: 10.1016/j.molcel.2025.06.014 . PMID   40614722.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  137. Buster DW, Daniel SG, Nguyen HQ, Windler SL, Skwarek LC, Peterson M, Roberts M, Meserve JH, Hartl T, Klebba JE, Bilder D, Bosco G, Rogers GC (2013). "SCFSlimb ubiquitin ligase suppresses condensin II-mediated nuclear reorganization by degrading Cap-H2". J. Cell Biol. 201 (1): 49–63. doi:10.1083/jcb.201207183. PMC   3613687 . PMID   23530065.
  138. Trimborn M, Schindler D, Neitzel H, Hirano T (2006). "Misregulated chromosome condensation in MCPH1 primary microcephaly is mediated by condensin II". Cell Cycle. 5 (3): 322–6. doi: 10.4161/cc.5.3.2412 . PMID   16434882.
  139. Martin CA, Murray JE, Carroll P, Leitch A, Mackenzie KJ, Halachev M, Fetit AE, Keith C, Bicknell LS, Fluteau A, Gautier P, Hall EA, Joss S, Soares G, Silva J, Bober MB, Duker A, Wise CA, Quigley AJ, Phadke SR, The Deciphering Developmental Disorders Study, Wood AJ, Vagnarelli P, Jackson AP (2016). "Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis". Genes Dev. 30 (19): 2158–72. doi:10.1101/gad.286351.116. PMC   5088565 . PMID   27737959.
  140. Gosling KM, Makaroff LE, Theodoratos A, Kim YH, Whittle B, Rui L, Wu H, Hong NA, Kennedy GC, Fritz JA, Yates AL, Goodnow CC, Fahrer AM (2007). "A mutation in a chromosome condensin II subunit, kleisin beta, specifically disrupts T cell development". Proc. Natl. Acad. Sci. USA. 104 (30): 12445–50. Bibcode:2007PNAS..10412445G. doi: 10.1073/pnas.0704870104 . PMC   1941488 . PMID   17640884.
  141. Woodward J, Taylor GC, Soares DC, Boyle S, Sie D, Read D, Chathoth K, Vukovic M, Tarrats N, Jamieson D, Campbell KJ, Blyth K, Acosta JC, Ylstra B, Arends MJ, Kranc KR, Jackson AP, Bickmore WA, Wood AJ (2016). "Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability". Genes Dev. 30 (19): 2173–86. doi:10.1101/gad.284562.116. PMC   5088566 . PMID   27737961.
  142. Yoshinaga M, Inagaki Y (2021). "Ubiquity and Origins of Structural Maintenance of Chromosomes (SMC) Proteins in Eukaryotes". Genome Biol Evol. 13 (12) evab256. doi:10.1093/gbe/evab256. PMC   8665677 . PMID   34894224.
  143. van Hooff JJE, Raas MWD, Tromer EC, Eme L (2025). "Repeated duplications and losses shaped SMC complex evolution from archaeal ancestors to modern eukaryotes". Cell Rep. 44 (7) 115855. doi: 10.1016/j.celrep.2025.115855 . PMID   40540396.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  144. Hoencamp C, Dudchenko O, Elbatsh AM, Brahmachari S, Raaijmakers JA, van Schaik T, Sedeño Cacciatore Á, Contessoto VG, van Heesbeen RG, van den Broek B, Mhaskar AN, Teunissen H, St Hilaire BG, Weisz D, Omer AD, Pham M, Colaric Z, Yang Z, Rao SS, Mitra N, Lui C, Yao W, Khan R, Moroz LL, Kohn A, St Leger J, Mena A, Holcroft K, Gambetta MC, Lim F, Farley E, Stein N, Haddad A, Chauss D, Mutlu AS, Wang MC, Young ND, Hildebrandt E, Cheng HH, Knight CJ, Burnham TL, Hovel KA, Beel AJ, Mattei PJ, Kornberg RD, Warren WC, Cary G, Gómez-Skarmeta JL, Hinman V, Lindblad-Toh K, Di Palma F, Maeshima K, Multani AS, Pathak S, Nel-Themaat L, Behringer RR, Kaur P, Medema RH, van Steensel B, de Wit E, Onuchic JN, Di Pierro M, Lieberman Aiden E, Rowland BD (2021). "3D genomics across the tree of life reveals condensin II as a determinant of architecture type". Science. 372 (6545): 984–9. doi:10.1126/science.abe2218. PMC   8172041 . PMID   34045355.