Chukanovite

Last updated
Chukanovite
General
Category Carbonate
Formula
(repeating unit)
Fe 2(C O 3)(OH)2
IMA symbol Ckn [1]
Strunz classification 05.BA.10
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group P21/a
Unit cell a = 12.396  Å, b = 9.407 Å
c = 3.2152 Å;
β = 97.78°; Z = 4
Identification
Formula mass 206.88 g
ColorColorless, pale green (unaltered); brown to brownish green (at surface)
Crystal habit Acicular to fibrous crystals
Cleavage {021} Perfect
Fracture Irregular/uneven
Tenacity Brittle
Mohs scale hardness3.5-4
Luster Vitreous
Streak White (unaltered), yellow (at surface)
Diaphaneity Transparent
Density 3.60 g/cm3
Optical propertiesBiaxial negative
Refractive index nα= 1.673 nβ= 1.770 nγ= 1.780
Birefringence δ=0.1070
Pleochroism Nonpleochroic
References [2] [3] [4] [5]

Chukanovite is an iron(II) hydroxide-carbonate mineral with the ideal chemical formula Fe+22(CO3)(OH)2. It is a member of the rosasite mineral group and crystalizes in the monoclinic crystal system. Upon initial crystallization, it is typically pale green to colorless, but it takes on a brownish green hue after being altered at the surface. As a weathering product of meteoritic iron, chukanovite is a relatively uncommon mineral on Earth, having only been discovered in the year 2000. However, it is commonly formed artificially as a corrosion byproduct through the manufacturing of sand-deposited carbon steel. [4] [5]

Contents

Occurrence

Chukanovite was first discovered in weathered cavities of a meteorite which fell near the small village of Dronino, 350 km southeast of Moscow, Russia, but the mineral has since been found elsewhere in cavities of other iron-rich meteorites. It occurs primarily in association with goethite, akaganeite, hematite, hibbingite, reevesite, honessite, and kamacite, though the meteorites that contain chukanovite also tend to contain taenite and chromite. Individual crystals form from a reaction between kamacite and cold water that is rich in dissolved carbon dioxide, during which they adopt a fibrous to acicular habit and grow to an average size of roughly 0.5 mm in length and 2-3 μm in thickness. Individual crystals tend to coalesce within the meteorite cavities into porous collections or crusts of spherulites, each with a diameter of about 1 mm. [4] [2]

Physical properties

Crystals of chukanovite are pale green to colorless with a vitreous luster. If exposed to air for extended periods of time, chukanovite will weather over the course of a few months, becoming brownish green and then increasingly losing its color and luster as time passes. Throughout the weathering process, the mineral's streak will also change color, from white when unaltered to brownish yellow when weathered. Regardless of the degree to which it is weathered, chukanovite's cleavage remains perfect on {021}, and its tenacity is always brittle. On the Mohs scale of mineral hardness, chukanovite lies between 3.5 and 4.0, making it softer than fluorite but harder than calcite. Its density is 3.60 g/cm3. [2] [3]

Optical and Chemical properties

Chukanovite is optically biaxial negative with α = 1.673, β = 1.770, γ = 1.780, 2V(meas.) = 10°, and 2V(calc.) = 34°. The crystals are transparent and nonpleochroic, and exhibit a birefringence of δ=0.1070.

The ideal chemical formula for chukanovite is Fe+22(CO3)(OH)2 but actual composition can vary and usually includes nickel and magnesium. The empirical formula, calculated on the basis of two metal cations, is (Fe+21.97Ni0.02Mg0.01)Σ2.00(CO3)0.93(OH)2.14•0.18H2O. As a carbonate mineral, chukanovite effervesces readily in cold, dilute HCl solution. [3] [2] [4]

Chemical composition

The table below lists the average composition of oxides in chukanovite.

Oxidewt%Range
MgO0.10.05-0.2
FeO68.867.5-69.9
NiO0.60.5-0.8
CO219.8-
H2O10.9-
Total100.2-

[4]

X-ray crystallography

Chukanovite crystallizes in the monoclinic crystal system, within the 2/m point group and P21/a space group. Its unit cell consists of three unequal axes lengths with angles α = γ = 90°; β = 97.78°. The unit cell dimensions were measured via x-ray powder diffraction and are a = 12.396 Å, b = 9.407 Å, c = 3.2152 Å, and Z = 4. The following chart tabulates the x-ray diffractogram results for chukanovite using conventional x-ray diffraction methods with FeKα radiation (λ = 1.93 Å).

dobs (Å)Iobshkl
7.5315110
6.1340200
5.1560210
4.7315020
3.7380310
3.215001
3.0530320
2.91625410
2.79895230
2.645100021
2.5635420
2.36140510
2.23610-131
2.17140520
2.13730-421
2.0420231
1.96615530
1.901<5-521
1.87510620
1.855-241
1.79720250
1.76610241
1.73350-531

[4]

See also

Related Research Articles

<span class="mw-page-title-main">Kamacite</span> Alloy of iron and nickel found in meteorites

Kamacite is an alloy of iron and nickel, which is found on Earth only in meteorites. According to the International Mineralogical Association (IMA) it is considered a proper nickel-rich variety of the mineral native iron. The proportion iron:nickel is between 90%:10% and 95%:5%; small quantities of other elements, such as cobalt or carbon may also be present. The mineral has a metallic luster, is gray and has no clear cleavage although its crystal structure is isometric-hexoctahedral. Its density is about 8 g/cm3 and its hardness is 4 on the Mohs scale. It is also sometimes called balkeneisen.

<span class="mw-page-title-main">Epidote</span> Sorosilicate mineral

Epidote is a calcium aluminium iron sorosilicate mineral.

<span class="mw-page-title-main">Stilbite</span>

Stilbite is the name of a series of tectosilicate minerals of the zeolite group. Prior to 1997, stilbite was recognized as a mineral species, but a reclassification in 1997 by the International Mineralogical Association changed it to a series name, with the mineral species being named:

<span class="mw-page-title-main">Vivianite</span>

Vivianite (Fe2+
Fe2+
2
(PO
4
)
2
·8H
2
O
) is a hydrated iron phosphate mineral found in a number of geological environments. Small amounts of manganese Mn2+, magnesium Mg and calcium Ca may substitute for iron Fe2+ in the structure. Pure vivianite is colorless, but the mineral oxidizes very easily, changing the color, and it is usually found as deep blue to deep bluish green prismatic to flattened crystals.
Vivianite crystals are often found inside fossil shells, such as those of bivalves and gastropods, or attached to fossil bone.

<span class="mw-page-title-main">Brazilianite</span>

Brazilianite, whose name derives from its country of origin, Brazil, is a typically yellow-green phosphate mineral, most commonly found in phosphate-rich pegmatites.

<span class="mw-page-title-main">Scolecite</span>

Scolecite is a tectosilicate mineral belonging to the zeolite group; it is a hydrated calcium silicate, CaAl2Si3O10·3H2O. Only minor amounts of sodium and traces of potassium substitute for calcium. There is an absence of barium, strontium, iron and magnesium. Scolecite is isostructural (having the same structure) with the sodium-calcium zeolite mesolite and the sodium zeolite natrolite, but it does not form a continuous chemical series with either of them. It was described in 1813, and named from the Greek word, σκώληξ (sko-lecks) = "worm" because of its reaction to the blowpipe flame.

<span class="mw-page-title-main">Todorokite</span> Hydrous manganese oxide mineral

Todorokite is a rare complex hydrous manganese oxide mineral with the chemical formula (Na,Ca,K,Ba,Sr)
1-x
(Mn,Mg,Al)
6
O
12
·3-4H
2
O
. It was named in 1934 for the type locality, the Todoroki mine, Hokkaido, Japan. It belongs to the prismatic class 2/m of the monoclinic crystal system, but the angle β between the a and c axes is close to 90°, making it seem orthorhombic. It is a brown to black mineral which occurs in massive or tuberose forms. It is quite soft with a Mohs hardness of 1.5, and a specific gravity of 3.49 - 3.82. It is a component of deep ocean basin manganese nodules.

<span class="mw-page-title-main">Babingtonite</span>

Babingtonite is a calcium iron manganese inosilicate mineral with the formula Ca2(Fe,Mn)FeSi5O14(OH). It is unusual in that iron(III) completely replaces the aluminium so typical of silicate minerals. It is a very dark green to black translucent (in thin crystals or splinters) mineral crystallizing in the triclinic system with typically radial short prismatic clusters and druzy coatings. It occurs with zeolite minerals in cavities in volcanic rocks. Babingtonite contains both iron(II) and iron(III) and shows weak magnetism. It has a Mohs hardness of 5.5 to 6 and a specific gravity of 3.3.

<span class="mw-page-title-main">Akaganeite</span> Iron(III) oxide-hydroxide mineral

Akaganeite, also written as the deprecated Akaganéite, is a chloride-containing iron(III) oxide-hydroxide mineral, formed by the weathering of pyrrhotite (Fe1−xS).

<span class="mw-page-title-main">Xonotlite</span> Inosilicate mineral

Xonotlite, or eakleite, is a mineral of general formula Ca6Si6O17(OH)2 named by the German mineralogist Karl Friedrich August Rammelsberg in 1866. The name originates from its discovery locality, Tetela de Xonotla, Puebla, Mexico. Although it was discovered in 1866, it was first described in 1959. It is approved by the IMA, but it is a grandfathered species, meaning the name supposedly represents a valid species til this day.

<span class="mw-page-title-main">Ettringite</span> Hydrous calcium sulfo-aluminate

Ettringite is a hydrous calcium aluminium sulfate mineral with formula: Ca6Al2(SO4)3(OH)12·26H2O. It is a colorless to yellow mineral crystallizing in the trigonal system. The prismatic crystals are typically colorless, turning white on partial dehydration. It is part of the ettringite-group which includes other sulfates such as thaumasite and bentorite.

Anandite is a rare phyllosilicate with formula (Ba,K)(Fe2+,Mg)3(Si,Al,Fe)4O10(S,OH)2. It crystallizes in the monoclinic crystal system. It is black in color with a glassy luster and a near perfect cleavage.

Akimotoite is a rare silicate mineral in the ilmenite group of minerals, with the chemical formula (Mg,Fe)SiO3. It is polymorphous with pyroxene and with bridgmanite, a natural silicate perovskite that is the most abundant mineral in Earth's silicate mantle. Akimotoite has a vitreous luster, is colorless, and has a white or colorless streak. It crystallizes in the trigonal crystal system in space group R3. It is the silicon analogue of geikielite (MgTiO3).

<span class="mw-page-title-main">Cervandonite</span> Sorosilicate mineral

Cervandonite is a rare arsenosilicate mineral. It has a chemical formula (Ce,Nd,La)(Fe3+
,Fe2+
,Ti4+
,Al)
3
SiAs(Si,As)O
13
or (Ce,Nd,La)(Fe3+
,Fe2+
,Ti,Al)
3
O
2
(Si
2
O
7
)(As3+
O
3
)(OH)
. It has a monoclinic crustal structure with supercell (Z=6), the crystal structure was established as a trigonal subcell, with space group R3m and a = 6.508(1)Ǻ, c = 18.520(3) Ǻ, V 679.4(2) Ǻ3, and Z=3. It was first described by Buhler Armbruster in 1988, but it has proven to be problem due to the extreme scarcity of single crystals and its unusual replacement of silicon and arsenic. Cervandonite is named after the location where it was first described, Pizzo Cervandone (Scherbadung), Italy in the Central Alps.

Clearcreekite is a carbonate mineral, polymorphous with peterbaylissite. The chemical formula of clearcreekite is Hg1+3CO3(OH)∙2H2O. It has a pale greenish yellow color and streak with tabular subhedral crystals and good cleavage on {001}. It is transparent with vitreous luster and uneven fracture. Its density (calculated from the idealized formula) is 6.96 g/cm3. The mineral is monoclinic with the space group P2/c. Clearcreekite is an extremely rare mineral from the Clear Creek mercury mine, New Idria district, San Benito County, California. It was probably formed after the alteration of other mercury minerals such as cinnabar. The mineral is named after the locality where it was found.

<span class="mw-page-title-main">Tuperssuatsiaite</span>

Tuperssuatsiaite is a rare clay mineral found in Greenland, Namibia and Brazil. It is a hydrated phyllosilicate of sodium and iron.

Paulscherrerite, UO2(OH)2, is a newly named mineral of the schoepite subgroup of hexavalent uranium hydrate/hydroxides. It is monoclinic, but no space group has been determined because no single-crystal study has been done. Paulscherrerite occurs as a canary yellow microcrystalline powdery product with a length of ~500 nm. It forms by the weathering and ultimate pseudomorphism of uranium-lead bearing minerals such as metaschoepite. The type locality for paulscherrerite is the Number 2 Workings, Radium Ridge near Mount Painter, North Flinders Ranges, South Australia, an area where radiogenic heat has driven hydrothermal activity for millions of years. It is named for Swiss physicist Paul Scherrer, co-inventor of the Debye-Scherrer X-ray powder diffraction camera. Study of paulscherrerite and related minerals is important for understanding the mobility of uranium around mining sites, as well as designing successful strategies for the storage of nuclear weapons and the containment of nuclear waste.

Penikisite was discovered by Alan Kulan and Gunar Penikis near Rapid Creek, Yukon Territory. The mineral is a member of the bjarebyite group along with kulanite, ideally BaFe2+2Al2(PO4)3(OH)3, and bjarebyite, ideally BaMn2+2Al2(PO4)3(OH)3. It is among several new minerals that have been discovered in the Rapid Creek and Big Fish areas of Yukon Territory. Kulanite is similar in many ways to penikisite in appearance and properties. The chemical formula for penikisite is Ba(Mg,Fe,Ca)Al2(PO4)2(OH)3. It has a hardness of about 4 and a density of 3.79 g/cm3. Penikisite is unique among the bjarebyite group in being monoclinic and has a biaxial optical class. It comes in shades of blue and green and, when rubbed on a streak plate, is pale green to white in color. Although penikisite and kulanite both range from blue to green, penikisite zones are easily distinguishable from kulanite zones in kulanite-penikisite crystals because they are lighter than the darker kulanite in color. Penikisite is a phosphate and is different from kulanite in that it is a magnesium-rich phosphate whereas kulanite is an iron-rich phosphate.

<span class="mw-page-title-main">Widgiemoolthalite</span> Carbonate mineral

Widgiemoolthalite is a rare hydrated nickel(II) carbonate mineral with the chemical formula (Ni,Mg)5(CO3)4(OH)2·5H2O. Usually bluish-green in color, it is a brittle mineral formed during the weathering of nickel sulfide. Present on gaspéite surfaces, widgiemoolthalite has a Mohs scale hardness of 3.5 and an unknown though likely disordered crystal structure. Widgiemoolthalite was first discovered in 1992 in Widgiemooltha, Western Australia, which is to date its only known source. It was named the following year by the three researchers who first reported its existence, Ernest H. Nickel, Bruce W. Robinson, and William G. Mumme.

Parascorodite is a rare, secondary iron-arsenate mineral. It has a chemical formula of (FeAsO4·2H2O) and was discovered in 1967 using X-ray powder diffraction methods, when an unknown substance was found along with scorodite on medieval ore dumps in the Czech Republic. The holotype of parascorodite can be found in the mineralogical collection of the National Museum, Prague, Czech Republic under acquisition number P1p25/98.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 4 "Chukanovite". Mindat.org.
  3. 1 2 3 "Chukanovite Mineral Data". Webmineral.com. Retrieved 8 December 2021.
  4. 1 2 3 4 5 6 Pekov, Igor; Perchiazzi, Natale; Merlino, Stefano; Kalachev, Vyacheslav; Merlini, Marco; Zadov, Aleksandr (November 2007). "Chukanovite, Fe2(CO3)(OH)2, a new mineral from the weathered iron meteorite Dronino". European Journal of Mineralogy. 19 (6): 891–898. Bibcode:2007EJMin..19..891P. doi:10.1127/0935-1221/2007/0019-1767 . Retrieved 8 December 2021.
  5. 1 2 Pandarinathan, Vedapriya; Lepková, Katerina; Van Bronswijk, Wilhelm (2014). "Chukanovite (Fe2(OH)2CO3) identified as a corrosion product at sand-deposited carbon steel in CO2-saturated brine". Corrosion Science. 85: 26–32. doi:10.1016/j.corsci.2014.03.032.