Cohomology with compact support

Last updated

In mathematics, cohomology with compact support refers to certain cohomology theories, usually with some condition requiring that cocycles should have compact support.

Contents

Singular cohomology with compact support

Let be a topological space. Then

This is also naturally isomorphic to the cohomology of the sub–chain complex consisting of all singular cochains that have compact support in the sense that there exists some compact such that vanishes on all chains in .


Functorial definition

Let be a topological space and the map to the point. Using the direct image and direct image with compact support functors , one can define cohomology and cohomology with compact support of a sheaf of abelian groups on as

de Rham cohomology with compact support for smooth manifolds

Given a manifold X, let be the real vector space of k-forms on X with compact support, and d be the standard exterior derivative. Then the de Rham cohomology groups with compact support are the homology of the chain complex :

i.e., is the vector space of closed q-forms modulo that of exact q-forms.

Despite their definition as the homology of an ascending complex, the de Rham groups with compact support demonstrate covariant behavior; for example, given the inclusion mapping j for an open set U of X, extension of forms on U to X (by defining them to be 0 on XU) is a map inducing a map

.

They also demonstrate contravariant behavior with respect to proper maps - that is, maps such that the inverse image of every compact set is compact. Let f: YX be such a map; then the pullback

induces a map

.

If Z is a submanifold of X and U = XZ is the complementary open set, there is a long exact sequence

called the long exact sequence of cohomology with compact support. It has numerous applications, such as the Jordan curve theorem, which is obtained for X = R² and Z a simple closed curve in X.

De Rham cohomology with compact support satisfies a covariant Mayer–Vietoris sequence: if U and V are open sets covering X, then

where all maps are induced by extension by zero is also exact.

See also

Related Research Articles

In vector calculus, and more generally differential geometry, Stokes' theorem is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. Stokes' theorem says that the integral of a differential form ω over the boundary of some orientable manifold Ω is equal to the integral of its exterior derivative over the whole of Ω, i.e.,

In the mathematical fields of differential geometry and tensor calculus, differential forms are an approach to multivariable calculus that is independent of coordinates. Differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

De Rham cohomology cohomology with real coefficients computed using differential forms

In mathematics, de Rham cohomology is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties.

In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi-Yau manifolds, string theory, Chern-Simons theory, knot theory, Gromov-Witten invariants, topological quantum field theory, Chern theorem and more.

In mathematics, particularly algebraic topology and homology theory, the Mayer–Vietoris sequence is an algebraic tool to help compute algebraic invariants of topological spaces, known as their homology and cohomology groups. The result is due to two Austrian mathematicians, Walther Mayer and Leopold Vietoris. The method consists of splitting a space into subspaces, for which the homology or cohomology groups may be easier to compute. The sequence relates the (co)homology groups of the space to the (co)homology groups of the subspaces. It is a natural long exact sequence, whose entries are the (co)homology groups of the whole space, the direct sum of the (co)homology groups of the subspaces, and the (co)homology groups of the intersection of the subspaces.

In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form which vanishes under the Laplacian operator of the metric. Such forms are called harmonic.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

Čech cohomology

In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech.

In contexts including complex manifolds and algebraic geometry, a logarithmic differential form is a meromorphic differential form with poles of a certain kind. The concept was introduced by Deligne.

In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory.

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

In mathematics, the Leray spectral sequence was a pioneering example in homological algebra, introduced in 1946 by Jean Leray. It is usually seen nowadays as a special case of the Grothendieck spectral sequence.

In the field of mathematics known as algebraic topology, the Gysin sequence is a long exact sequence which relates the cohomology classes of the base space, the fiber and the total space of a sphere bundle. The Gysin sequence is a useful tool for calculating the cohomology rings given the Euler class of the sphere bundle and vice versa. It was introduced by Gysin (1942), and is generalized by the Serre spectral sequence.

In mathematics, Verdier duality is a duality in sheaf theory that generalizes Poincaré duality for manifolds. Verdier duality was introduced by Verdier as an analog for locally compact spaces of the coherent duality for schemes due to Grothendieck. It is commonly encountered when studying constructible or perverse sheaves.

In mathematics, Seiberg–Witten invariants are invariants of compact smooth oriented 4-manifolds introduced by Edward Witten (1994), using the Seiberg–Witten theory studied by Nathan Seiberg and Witten during their investigations of Seiberg–Witten gauge theory.

In mathematics, a diffiety is a geometrical object introduced by Alexandre Mikhailovich Vinogradov playing the same role in the modern theory of partial differential equations as algebraic varieties play for algebraic equations.

In mathematics a translation surface is a surface obtained from identifying the sides of a polygon in the Euclidean plane by translations. An equivalent definition is a Riemann surface together with a holomorphic 1-form.

In differential geometry, the integration along fibers of a k-form yields a -form where m is the dimension of the fiber, via "integration".

In mathematics, the Hodge–de Rham spectral sequence, also known as the Frölicher spectral sequence computes the cohomology of a complex manifold.

References