Direct image with compact support

Last updated

In mathematics, the direct image with compact (or proper) support is an image functor for sheaves that extends the compactly supported global sections functor to the relative setting. It is one of Grothendieck's six operations.

Contents

Definition

Let f: XY be a continuous mapping of locally compact Hausdorff topological spaces, and let Sh(–) denote the category of sheaves of abelian groups on a topological space. The direct image with compact (or proper) support is the functor

f!: Sh(X) → Sh(Y)

that sends a sheaf F on X to the sheaf f!(F) given by the formula

f!(F)(U) := {sF(f 1(U)) | f|supp(s): supp(s)  U is proper}

for every open subset U of Y. Here, the notion of a proper map of spaces is unambiguous since the spaces in question are locally compact Hausdorff. [1] This defines f!(F) as a subsheaf of the direct image sheaf f(F), and the functoriality of this construction then follows from basic properties of the support and the definition of sheaves.

The assumption that the spaces be locally compact Hausdorff is imposed in most sources (e.g., Iversen or Kashiwara–Schapira). In slightly greater generality, Olaf Schnürer and Wolfgang Soergel have introduced the notion of a "locally proper" map of spaces and shown that the functor of direct image with compact support remains well-behaved when defined for separated and locally proper continuous maps between arbitrary spaces. [2]

Properties

Related Research Articles

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, a sober space is a topological space X such that every (nonempty) irreducible closed subset of X is the closure of exactly one point of X: that is, every irreducible closed subset has a unique generic point.

In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces.

In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.

In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper.

In mathematics, injective sheaves of abelian groups are used to construct the resolutions needed to define sheaf cohomology.

In mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: XY, we can define a new sheaf fF on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of fF is given by the global sections of F. This assignment gives rise to a functor f from the category of sheaves on X to the category of sheaves on Y, which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of quasi-coherent sheaves and étale sheaves on a scheme.

In mathematics, the Leray spectral sequence was a pioneering example in homological algebra, introduced in 1946 by Jean Leray. It is usually seen nowadays as a special case of the Grothendieck spectral sequence.

In mathematics, specifically in algebraic topology and algebraic geometry, an inverse image functor is a contravariant construction of sheaves; here “contravariant” in the sense given a map , the inverse image functor is a functor from the category of sheaves on Y to the category of sheaves on X. The direct image functor is the primary operation on sheaves, with the simplest definition. The inverse image exhibits some relatively subtle features.

In mathematics, Verdier duality is a cohomological duality in algebraic topology that generalizes Poincaré duality for manifolds. Verdier duality was introduced in 1965 by Jean-Louis Verdier (1995) as an analog for locally compact topological spaces of Alexander Grothendieck's theory of Poincaré duality in étale cohomology for schemes in algebraic geometry. It is thus one instance of Grothendieck's six operations formalism.

In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In mathematics, more specifically sheaf theory, a branch of topology and algebraic geometry, the exceptional inverse image functor is the fourth and most sophisticated in a series of image functors for sheaves. It is needed to express Verdier duality in its most general form.

In mathematics, especially in sheaf theory—a domain applied in areas such as topology, logic and algebraic geometry—there are four image functors for sheaves that belong together in various senses.

In mathematics, cohomology with compact support refers to certain cohomology theories, usually with some condition requiring that cocycles should have compact support.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.

In mathematics, the base change theorems relate the direct image and the inverse image of sheaves. More precisely, they are about the base change map, given by the following natural transformation of sheaves:

In mathematics, compact objects, also referred to as finitely presented objects, or objects of finite presentation, are objects in a category satisfying a certain finiteness condition.

References

  1. "Section 5.17 (005M): Characterizing proper maps—The Stacks project". stacks.math.columbia.edu. Retrieved 2022-09-25.
  2. Schnürer, Olaf M.; Soergel, Wolfgang (2016-05-19). "Proper base change for separated locally proper maps". Rendiconti del Seminario Matematico della Università di Padova. 135: 223–250. arXiv: 1404.7630 . doi:10.4171/rsmup/135-13. ISSN   0041-8994.
  3. "general topology - Proper direct image and extension by zero". Mathematics Stack Exchange. Retrieved 2022-09-25.