Comparative statics

Last updated
In this graph, comparative statics shows an increase in demand causing a rise in price and quantity. Comparing two equilibrium states, comparative statics does not describe how the increases actually occur. Supply-and-demand.svg
In this graph, comparative statics shows an increase in demand causing a rise in price and quantity. Comparing two equilibrium states, comparative statics does not describe how the increases actually occur.

In economics, comparative statics is the comparison of two different economic outcomes, before and after a change in some underlying exogenous parameter. [1]

Contents

As a type of static analysis it compares two different equilibrium states, after the process of adjustment (if any). It does not study the motion towards equilibrium, nor the process of the change itself.

Comparative statics is commonly used to study changes in supply and demand when analyzing a single market, and to study changes in monetary or fiscal policy when analyzing the whole economy. Comparative statics is a tool of analysis in microeconomics (including general equilibrium analysis) and macroeconomics. Comparative statics was formalized by John R. Hicks (1939) and Paul A. Samuelson (1947) (Kehoe, 1987, p. 517) but was presented graphically from at least the 1870s. [2]

For models of stable equilibrium rates of change, such as the neoclassical growth model, comparative dynamics is the counterpart of comparative statics (Eatwell, 1987).

Linear approximation

Comparative statics results are usually derived by using the implicit function theorem to calculate a linear approximation to the system of equations that defines the equilibrium, under the assumption that the equilibrium is stable. That is, if we consider a sufficiently small change in some exogenous parameter, we can calculate how each endogenous variable changes using only the first derivatives of the terms that appear in the equilibrium equations.

For example, suppose the equilibrium value of some endogenous variable is determined by the following equation:

where is an exogenous parameter. Then, to a first-order approximation, the change in caused by a small change in must satisfy:

Here and represent the changes in and , respectively, while and are the partial derivatives of with respect to and (evaluated at the initial values of and ), respectively. Equivalently, we can write the change in as:

Dividing through the last equation by da gives the comparative static derivative of x with respect to a, also called the multiplier of a on x:

Many equations and unknowns

All the equations above remain true in the case of a system of equations in unknowns. In other words, suppose represents a system of equations involving the vector of unknowns , and the vector of given parameters . If we make a sufficiently small change in the parameters, then the resulting changes in the endogenous variables can be approximated arbitrarily well by . In this case, represents the × matrix of partial derivatives of the functions with respect to the variables , and represents the × matrix of partial derivatives of the functions with respect to the parameters . (The derivatives in and are evaluated at the initial values of and .) Note that if one wants just the comparative static effect of one exogenous variable on one endogenous variable, Cramer's Rule can be used on the totally differentiated system of equations .

Stability

The assumption that the equilibrium is stable matters for two reasons. First, if the equilibrium were unstable, a small parameter change might cause a large jump in the value of , invalidating the use of a linear approximation. Moreover, Paul A. Samuelson's correspondence principle [3] [4] [5] :pp.122–123. states that stability of equilibrium has qualitative implications about the comparative static effects. In other words, knowing that the equilibrium is stable may help us predict whether each of the coefficients in the vector is positive or negative. Specifically, one of the n necessary and jointly sufficient conditions for stability is that the determinant of the n×n matrix B have a particular sign; since this determinant appears as the denominator in the expression for , the sign of the determinant influences the signs of all the elements of the vector of comparative static effects.

An example of the role of the stability assumption

Suppose that the quantities demanded and supplied of a product are determined by the following equations:

where is the quantity demanded, is the quantity supplied, P is the price, a and c are intercept parameters determined by exogenous influences on demand and supply respectively, b < 0 is the reciprocal of the slope of the demand curve, and g is the reciprocal of the slope of the supply curve; g > 0 if the supply curve is upward sloped, g = 0 if the supply curve is vertical, and g < 0 if the supply curve is backward-bending. If we equate quantity supplied with quantity demanded to find the equilibrium price , we find that

This means that the equilibrium price depends positively on the demand intercept if gb > 0, but depends negatively on it if gb < 0. Which of these possibilities is relevant? In fact, starting from an initial static equilibrium and then changing a, the new equilibrium is relevant only if the market actually goes to that new equilibrium. Suppose that price adjustments in the market occur according to

where > 0 is the speed of adjustment parameter and is the time derivative of the price — that is, it denotes how fast and in what direction the price changes. By stability theory, P will converge to its equilibrium value if and only if the derivative is negative. This derivative is given by

This is negative if and only if gb > 0, in which case the demand intercept parameter a positively influences the price. So we can say that while the direction of effect of the demand intercept on the equilibrium price is ambiguous when all we know is that the reciprocal of the supply curve's slope, g, is negative, in the only relevant case (in which the price actually goes to its new equilibrium value) an increase in the demand intercept increases the price. Note that this case, with gb > 0, is the case in which the supply curve, if negatively sloped, is steeper than the demand curve.

Without constraints

Suppose is a smooth and strictly concave objective function where x is a vector of n endogenous variables and q is a vector of m exogenous parameters. Consider the unconstrained optimization problem . Let , the n by n matrix of first partial derivatives of with respect to its first n arguments x1,...,xn. The maximizer is defined by the n×1 first order condition .

Comparative statics asks how this maximizer changes in response to changes in the m parameters. The aim is to find .

The strict concavity of the objective function implies that the Jacobian of f, which is exactly the matrix of second partial derivatives of p with respect to the endogenous variables, is nonsingular (has an inverse). By the implicit function theorem, then, may be viewed locally as a continuously differentiable function, and the local response of to small changes in q is given by

Applying the chain rule and first order condition,

(See Envelope theorem).

Application for profit maximization

Suppose a firm produces n goods in quantities . The firm's profit is a function p of and of m exogenous parameters which may represent, for instance, various tax rates. Provided the profit function satisfies the smoothness and concavity requirements, the comparative statics method above describes the changes in the firm's profit due to small changes in the tax rates.

With constraints

A generalization of the above method allows the optimization problem to include a set of constraints. This leads to the general envelope theorem. Applications include determining changes in Marshallian demand in response to changes in price or wage.

Limitations and extensions

One limitation of comparative statics using the implicit function theorem is that results are valid only in a (potentially very small) neighborhood of the optimum—that is, only for very small changes in the exogenous variables. Another limitation is the potentially overly restrictive nature of the assumptions conventionally used to justify comparative statics procedures. For example, John Nachbar discovered in one of his case studies that using comparative statics in general equilibrium analysis works best with very small, individual level of data rather than at an aggregate level. [6]

Paul Milgrom and Chris Shannon [7] pointed out in 1994 that the assumptions conventionally used to justify the use of comparative statics on optimization problems are not actually necessary—specifically, the assumptions of convexity of preferred sets or constraint sets, smoothness of their boundaries, first and second derivative conditions, and linearity of budget sets or objective functions. In fact, sometimes a problem meeting these conditions can be monotonically transformed to give a problem with identical comparative statics but violating some or all of these conditions; hence these conditions are not necessary to justify the comparative statics. Stemming from the article by Milgrom and Shannon as well as the results obtained by Veinott [8] and Topkis [9] an important strand of operational research was developed called monotone comparative statics. In particular, this theory concentrates on the comparative statics analysis using only conditions that are independent of order-preserving transformations. The method uses lattice theory and introduces the notions of quasi-supermodularity and the single-crossing condition. The wide application of monotone comparative statics to economics includes production theory, consumer theory, game theory with complete and incomplete information, auction theory, and others. [10]

See also

Notes

  1. (Mas-Colell, Whinston, and Green, 1995, p. 24; Silberberg and Suen, 2000)
  2. Fleeming Jenkin (1870), "The Graphical Representation of the Laws of Supply and Demand, and their Application to Labour," in Alexander Grant, Recess Studies and (1872), "On the principles which regulate the incidence of taxes," Proceedings of the Royal Society of Edinburgh 1871-2, pp. 618-30., also in Papers, Literary, Scientific, &c, v. 2 (1887), ed. S.C. Colvin and J.A. Ewing via scroll to chapter links.
  3. Samuelson, Paul, "The stability of equilibrium: Comparative statics and dynamics", Econometrica 9, April 1941, 97-120: introduces the concept of the correspondence principle.
  4. Samuelson, Paul, "The stability of equilibrium: Linear and non-linear systems", Econometrica 10(1), January 1942, 1-25: coins the term "correspondence principle".
  5. Baumol, William J., Economic Dynamics, Macmillan Co., 3rd edition, 1970.
  6. "U-M Weblogin". weblogin.umich.edu. doi:10.1057/978-1-349-95121-5_322-2 . Retrieved 2020-12-02.
  7. Milgrom, Paul, and Shannon, Chris. "Monotone Comparative Statics" (1994). Econometrica, Vol. 62 Issue 1, pp. 157-180.
  8. Veinott (1992): Lattice programming: qualitative optimization and equilibria. MS Stanford.
  9. See: Topkis, D. M. (1979): “Equilibrium Points in Nonzero-Sum n-Person Submodular Games,” SIAM Journal of Control and Optimization, 17, 773–787; as well as Topkis, D. M. (1998): Supermodularity and Complementarity, Frontiers of economic research, Princeton University Press, ISBN   9780691032443.
  10. See: Topkis, D. M. (1998): Supermodularity and Complementarity, Frontiers of economic research, Princeton University Press, ISBN   9780691032443; and Vives, X. (2001): Oligopoly Pricing: Old Ideas and New Tools. MIT Press, ISBN   9780262720403.

Related Research Articles

<span class="mw-page-title-main">Supply and demand</span> Economic model of price determination in microeconomics

In microeconomics, supply and demand is an economic model of price determination in a market. It postulates that, holding all else equal, in a competitive market, the unit price for a particular good, or other traded item such as labor or liquid financial assets, will vary until it settles at a point where the quantity demanded will equal the quantity supplied, resulting in an economic equilibrium for price and quantity transacted. The concept of supply and demand forms the theoretical basis of modern economics.

This aims to be a complete article list of economics topics:

<span class="mw-page-title-main">Heat equation</span> Partial differential equation describing the evolution of temperature in a region

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

In economics, economic equilibrium is a situation in which economic forces such as supply and demand are balanced and in the absence of external influences the values of economic variables will not change. For example, in the standard text perfect competition, equilibrium occurs at the point at which quantity demanded and quantity supplied are equal.

Simultaneous equations models are a type of statistical model in which the dependent variables are functions of other dependent variables, rather than just independent variables. This means some of the explanatory variables are jointly determined with the dependent variable, which in economics usually is the consequence of some underlying equilibrium mechanism. Take the typical supply and demand model: whilst typically one would determine the quantity supplied and demanded to be a function of the price set by the market, it is also possible for the reverse to be true, where producers observe the quantity that consumers demand and then set the price.

<span class="mw-page-title-main">Thermodynamic potential</span> Scalar physical quantities representing system states

A thermodynamic potential is a scalar quantity used to represent the thermodynamic state of a system. Just as in mechanics, where potential energy is defined as capacity to do work, similarly different potentials have different meanings. The concept of thermodynamic potentials was introduced by Pierre Duhem in 1886. Josiah Willard Gibbs in his papers used the term fundamental functions.

<span class="mw-page-title-main">Law of demand</span> Fundamental principle in microeconomics

In microeconomics, the law of demand is a fundamental principle which states that there is an inverse relationship between price and quantity demanded. In other words, "conditional on all else being equal, as the price of a good increases (↑), quantity demanded will decrease (↓); conversely, as the price of a good decreases (↓), quantity demanded will increase (↑)". Alfred Marshall worded this as: "When we say that a person's demand for anything increases, we mean that he will buy more of it than he would before at the same price, and that he will buy as much of it as before at a higher price". The law of demand, however, only makes a qualitative statement in the sense that it describes the direction of change in the amount of quantity demanded but not the magnitude of change.

In mathematics, the total derivative of a function f at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with respect to all of its arguments, not just a single one. In many situations, this is the same as considering all partial derivatives simultaneously. The term "total derivative" is primarily used when f is a function of several variables, because when f is a function of a single variable, the total derivative is the same as the ordinary derivative of the function.

Cournot competition is an economic model used to describe an industry structure in which companies compete on the amount of output they will produce, which they decide on independently of each other and at the same time. It is named after Antoine Augustin Cournot (1801–1877) who was inspired by observing competition in a spring water duopoly. It has the following features:

In statistics, and particularly in econometrics, the reduced form of a system of equations is the result of solving the system for the endogenous variables. This gives the latter as functions of the exogenous variables, if any. In econometrics, the equations of a structural form model are estimated in their theoretically given form, while an alternative approach to estimation is to first solve the theoretical equations for the endogenous variables to obtain reduced form equations, and then to estimate the reduced form equations.

In statistics, econometrics, epidemiology and related disciplines, the method of instrumental variables (IV) is used to estimate causal relationships when controlled experiments are not feasible or when a treatment is not successfully delivered to every unit in a randomized experiment. Intuitively, IVs are used when an explanatory variable of interest is correlated with the error term, in which case ordinary least squares and ANOVA give biased results. A valid instrument induces changes in the explanatory variable but has no independent effect on the dependent variable, allowing a researcher to uncover the causal effect of the explanatory variable on the dependent variable.

<span class="mw-page-title-main">Thermodynamic equations</span> Equations in thermodynamics

Thermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics.

Nondimensionalization is the partial or full removal of physical dimensions from an equation involving physical quantities by a suitable substitution of variables. This technique can simplify and parameterize problems where measured units are involved. It is closely related to dimensional analysis. In some physical systems, the term scaling is used interchangeably with nondimensionalization, in order to suggest that certain quantities are better measured relative to some appropriate unit. These units refer to quantities intrinsic to the system, rather than units such as SI units. Nondimensionalization is not the same as converting extensive quantities in an equation to intensive quantities, since the latter procedure results in variables that still carry units.

In econometrics, endogeneity broadly refers to situations in which an explanatory variable is correlated with the error term. The distinction between endogenous and exogenous variables originated in simultaneous equations models, where one separates variables whose values are determined by the model from variables which are predetermined; ignoring simultaneity in the estimation leads to biased estimates as it violates the exogeneity assumption of the Gauss–Markov theorem. The problem of endogeneity is often ignored by researchers conducting non-experimental research and doing so precludes making policy recommendations. Instrumental variable techniques are commonly used to address this problem.

<span class="mw-page-title-main">Mundell–Fleming model</span> Economic model

The Mundell–Fleming model, also known as the IS-LM-BoP model, is an economic model first set forth (independently) by Robert Mundell and Marcus Fleming. The model is an extension of the IS–LM model. Whereas the traditional IS-LM model deals with economy under autarky, the Mundell–Fleming model describes a small open economy.

In mathematics and economics, the envelope theorem is a major result about the differentiability properties of the value function of a parameterized optimization problem. As we change parameters of the objective, the envelope theorem shows that, in a certain sense, changes in the optimizer of the objective do not contribute to the change in the objective function. The envelope theorem is an important tool for comparative statics of optimization models.

In economics and econometrics, the parameter identification problem arises when the value of one or more parameters in an economic model cannot be determined from observable variables. It is closely related to non-identifiability in statistics and econometrics, which occurs when a statistical model has more than one set of parameters that generate the same distribution of observations, meaning that multiple parameterizations are observationally equivalent.

<i>Foundations of Economic Analysis</i>

Foundations of Economic Analysis is a book by Paul A. Samuelson published in 1947 by Harvard University Press. It is based on Samuelson's 1941 doctoral dissertation at Harvard University. The book sought to demonstrate a common mathematical structure underlying multiple branches of economics from two basic principles: maximizing behavior of agents and stability of equilibrium as to economic systems. Among other contributions, it advanced the theory of index numbers and generalized welfare economics. It is especially known for definitively stating and formalizing qualitative and quantitative versions of the "comparative statics" method for calculating how a change in any parameter affects an economic system. One of its key insights about comparative statics, called the correspondence principle, states that stability of equilibrium implies testable predictions about how the equilibrium changes when parameters are changed.

<span class="mw-page-title-main">Multiplier (economics)</span>

In macroeconomics, a multiplier is a factor of proportionality that measures how much an endogenous variable changes in response to a change in some exogenous variable.

Monotone comparative statics is a sub-field of comparative statics that focuses on the conditions under which endogenous variables undergo monotone changes when there is a change in the exogenous parameters. Traditionally, comparative results in economics are obtained using the Implicit Function Theorem, an approach that requires the concavity and differentiability of the objective function as well as the interiority and uniqueness of the optimal solution. The methods of monotone comparative statics typically dispense with these assumptions. It focuses on the main property underpinning monotone comparative statics, which is a form of complementarity between the endogenous variable and exogenous parameter. Roughly speaking, a maximization problem displays complementarity if a higher value of the exogenous parameter increases the marginal return of the endogenous variable. This guarantees that the set of solutions to the optimization problem is increasing with respect to the exogenous parameter.

References