Compartmental neuron models

Last updated

Compartmental modelling of dendrites deals with multi-compartment modelling of the dendrites, to make the understanding of the electrical behavior of complex dendrites easier. Basically, compartmental modelling of dendrites is a very helpful tool to develop new biological neuron models. Dendrites are very important because they occupy the most membrane area in many of the neurons and give the neuron an ability to connect to thousands of other cells. Originally the dendrites were thought to have constant conductance and current but now it has been understood that they may have active Voltage-gated ion channels, which influences the firing properties of the neuron and also the response of neuron to synaptic inputs. [1] Many mathematical models have been developed to understand the electric behavior of the dendrites. Dendrites tend to be very branchy and complex, so the compartmental approach to understand the electrical behavior of the dendrites makes it very useful. [1] [2]

Contents

Introduction

Multiple compartments

a) Branched dendrites viewed as cylinders for modelling. b) Simple model with three compartments Dendrites Modelling.jpg
a) Branched dendrites viewed as cylinders for modelling. b) Simple model with three compartments
Consider a two-compartmental model with the compartments viewed as isopotential cylinders with radius and length .
is the membrane potential of ith compartment.
is the specific membrane capacitance.
is the specific membrane resistivity.
The total electrode current, assuming that the compartment has it, is given by .
The longitudinal resistance is given by .
Now according to the balance that should exist for each compartment, we can say
.....eq(1)
where and are the capacitive and ionic currents per unit area of ith compartment membrane. i.e. they can be given by
and .....eq(2)
If we assume the resting potential is 0. Then to compute , we need total axial resistance. As the compartments are simply cylinders we can say
.....eq(3)
Using ohms law we can express current from ith to jth compartment as
and .....eq(4)
The coupling terms and are obtained by inverting eq(3) and dividing by surface area of interest.
So we get
and
Finally,
is the surface area of the compartment i.
If we put all these together we get
.....eq(5)
If we use and then eq(5) will become
.....eq(6)
Now if we inject current in cell 1 only and each cylinder is identical then
Without loss in generality we can define
After some algebra we can show that
also
i.e. the input resistance decreases. For increment in the potential, coupled system current should be greater than that is required for uncoupled system. This is because the second compartment drains some current.
Now, we can get a general compartmental model for a treelike structure and the equations are
[1]

Increased computational accuracy in multi-compartmental cable models

Each dendritic section is subdivided into segments, which are typically seen as uniform circular cylinders or tapered circular cylinders. In the traditional compartmental model, point process location is determined only to an accuracy of half segment length. This will make the model solution particularly sensitive to segment boundaries. The accuracy of the traditional approach for this reason is O(1/n) when a point current and synaptic input is present. Usually the trans-membrane current where the membrane potential is known is represented in the model at points, or nodes and is assumed to be at the center. The new approach partitions the effect of the input by distributing it to the boundaries of the segment. Hence any input is partitioned between the nodes at the proximal and distal boundaries of the segment. Therefore, this procedure makes sure that the solution obtained is not sensitive to small changes in location of these boundaries because it affects how the input is partitioned between the nodes. When these compartments are connected with continuous potentials and conservation of current at segment boundaries then a new compartmental model of a new mathematical form is obtained. This new approach also provides a model identical to the traditional model but an order more accurate. This model increases the accuracy and precision by an order of magnitude than that is achieved by point process input. [2]

Cable theory

Dendrites and axons are considered to be continuous (cable-like), rather than series of compartments. [1]

Some applications

Information processing

Midbrain dopaminergic neuron

Mode locking

Compartmental neural simulations with spatial adaptivity

Action potential (AP) initiation site

A finite-state automaton model

Constraining compartmental models

Multi-compartmental model of a CA1 pyramidal cell

Electrical compartmentalization

Robust coding in motion-sensitive neurons

Conductance-based neuron models

See also

Related Research Articles

<span class="mw-page-title-main">Dendrite</span> Small projection on a neuron that receives signals

A dendrite or dendron is a branched protoplasmic extension of a nerve cell that propagates the electrochemical stimulation received from other neural cells to the cell body, or soma, of the neuron from which the dendrites project. Electrical stimulation is transmitted onto dendrites by upstream neurons via synapses which are located at various points throughout the dendritic tree.

<span class="mw-page-title-main">Neuron</span> Electrically excitable cell found in the nervous system of animals

Within a nervous system, a neuron, neurone, or nerve cell is an electrically excitable cell that fires electric signals called action potentials across a neural network. Neurons communicate with other cells via synapses - specialized connections that commonly use minute amounts of chemical neurotransmitters to pass the electric signal from the presynaptic neuron to the target cell through the synaptic gap. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. Non-animals like plants and fungi do not have nerve cells. The ability to generate electric signals first appeared in evolution 700 million years ago. 800 million years ago, predecessors of neurons were the peptidergic secretory cells. They eventually gained new gene modules which enabled cells to create post-synaptic scaffolds and ion channels that generate fast electrical signals. The ability to generate electric signals was a key innovation in the evolution of the nervous system.

<span class="mw-page-title-main">Dendritic spine</span> Small protrusion on a dendrite that receives input from a single axon

A dendritic spine is a small membranous protrusion from a neuron's dendrite that typically receives input from a single axon at the synapse. Dendritic spines serve as a storage site for synaptic strength and help transmit electrical signals to the neuron's cell body. Most spines have a bulbous head, and a thin neck that connects the head of the spine to the shaft of the dendrite. The dendrites of a single neuron can contain hundreds to thousands of spines. In addition to spines providing an anatomical substrate for memory storage and synaptic transmission, they may also serve to increase the number of possible contacts between neurons. It has also been suggested that changes in the activity of neurons have a positive effect on spine morphology.

In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be represented by vastly interconnected neural circuits in the brain, synaptic plasticity is one of the important neurochemical foundations of learning and memory.

<span class="mw-page-title-main">Voltage clamp</span>

The voltage clamp is an experimental method used by electrophysiologists to measure the ion currents through the membranes of excitable cells, such as neurons, while holding the membrane voltage at a set level. A basic voltage clamp will iteratively measure the membrane potential, and then change the membrane potential (voltage) to a desired value by adding the necessary current. This "clamps" the cell membrane at a desired constant voltage, allowing the voltage clamp to record what currents are delivered. Because the currents applied to the cell must be equal to the current going across the cell membrane at the set voltage, the recorded currents indicate how the cell reacts to changes in membrane potential. Cell membranes of excitable cells contain many different kinds of ion channels, some of which are voltage-gated. The voltage clamp allows the membrane voltage to be manipulated independently of the ionic currents, allowing the current–voltage relationships of membrane channels to be studied.

<span class="mw-page-title-main">Pyramidal cell</span> Projection neurons in the cerebral cortex and hippocampus

Pyramidal cells, or pyramidal neurons, are a type of multipolar neuron found in areas of the brain including the cerebral cortex, the hippocampus, and the amygdala. Pyramidal cells are the primary excitation units of the mammalian prefrontal cortex and the corticospinal tract. Pyramidal neurons are also one of two cell types where the characteristic sign, Negri bodies, are found in post-mortem rabies infection. Pyramidal neurons were first discovered and studied by Santiago Ramón y Cajal. Since then, studies on pyramidal neurons have focused on topics ranging from neuroplasticity to cognition.

<span class="mw-page-title-main">Electrotonic potential</span>

In physiology, electrotonus refers to the passive spread of charge inside a neuron and between cardiac muscle cells or smooth muscle cells. Passive means that voltage-dependent changes in membrane conductance do not contribute. Neurons and other excitable cells produce two types of electrical potential:

<span class="mw-page-title-main">Backpropagation</span> Optimization algorithm for artificial neural networks

As a machine-learning algorithm, backpropagation performs a backward pass to adjust a neural network model's parameters, aiming to minimize the mean squared error (MSE). In a multi-layered network, backpropagation uses the following steps:

  1. Propagate training data through the model from input to predicted output by computing the successive hidden layers' outputs and finally the final layer's output.
  2. Adjust the model weights to reduce the error relative to the weights.
    1. The error is typically the squared difference between prediction and target.
    2. For each weight, the slope or derivative of the error is found, and the weight adjusted by a negative multiple of this derivative, so as to go downslope toward the minimum-error configuration.
    3. This derivative is easy to calculate for final layer weights, and possible to calculate for one layer given the next layer's derivatives. Starting at the end, then, the derivatives are calculated layer by layer toward the beginning -- thus "backpropagation".
  3. Repeatedly update the weights until they converge or the model has undergone enough iterations.
<span class="mw-page-title-main">Purkinje cell</span> Specialized neuron in the cerebellum

Purkinje cells, or Purkinje neurons, are a class of GABAergic inhibitory neurons located in the cerebellum. They are named after their discoverer, Czech anatomist Jan Evangelista Purkyně, who characterized the cells in 1839.

<span class="mw-page-title-main">Hodgkin–Huxley model</span> Describes how neurons transmit electric signals

The Hodgkin–Huxley model, or conductance-based model, is a mathematical model that describes how action potentials in neurons are initiated and propagated. It is a set of nonlinear differential equations that approximates the electrical engineering characteristics of excitable cells such as neurons and muscle cells. It is a continuous-time dynamical system.

<span class="mw-page-title-main">Cable theory</span> Mathematical model of a dendrite

Classical cable theory uses mathematical models to calculate the electric current along passive neurites, particularly the dendrites that receive synaptic inputs at different sites and times. Estimates are made by modeling dendrites and axons as cylinders composed of segments with capacitances and resistances combined in parallel. The capacitance of a neuronal fiber comes about because electrostatic forces are acting through the very thin lipid bilayer. The resistance in series along the fiber is due to the axoplasm's significant resistance to movement of electric charge.

Wilfrid Rall was a neuroscientist who spent most of his career at the National Institutes of Health. He is considered one of the founders of computational neuroscience, and was a pioneer in establishing the integrative functions of neuronal dendrites. Rall developed the use of cable theory in neuroscience, as well as passive and active compartmental modeling of the neuron.

<span class="mw-page-title-main">Biological neuron model</span> Mathematical descriptions of the properties of certain cells in the nervous system

Biological neuron models, also known as a spiking neuron models, are mathematical descriptions of neurons. In particular, these models describe how the voltage potential across the cell membrane changes over time. In an experimental setting, stimulating neurons with an electrical current generates an action potential, that propagates down the neuron's axon. This spike branches out to a large number of downstream neurons, where the signals terminate at synapses. As many as 85% of neurons in the neocortex, the outermost layer of the mammalian brain, consist of excitatory pyramidal neurons, and each pyramidal neuron receives tens of thousands of inputs from other neurons. Thus, spiking neurons are a major information processing unit of the nervous system.

In neurophysiology, several mathematical models of the action potential have been developed, which fall into two basic types. The first type seeks to model the experimental data quantitatively, i.e., to reproduce the measurements of current and voltage exactly. The renowned Hodgkin–Huxley model of the axon from the Loligo squid exemplifies such models. Although qualitatively correct, the H-H model does not describe every type of excitable membrane accurately, since it considers only two ions, each with only one type of voltage-sensitive channel. However, other ions such as calcium may be important and there is a great diversity of channels for all ions. As an example, the cardiac action potential illustrates how differently shaped action potentials can be generated on membranes with voltage-sensitive calcium channels and different types of sodium/potassium channels. The second type of mathematical model is a simplification of the first type; the goal is not to reproduce the experimental data, but to understand qualitatively the role of action potentials in neural circuits. For such a purpose, detailed physiological models may be unnecessarily complicated and may obscure the "forest for the trees". The FitzHugh–Nagumo model is typical of this class, which is often studied for its entrainment behavior. Entrainment is commonly observed in nature, for example in the synchronized lighting of fireflies, which is coordinated by a burst of action potentials; entrainment can also be observed in individual neurons. Both types of models may be used to understand the behavior of small biological neural networks, such as the central pattern generators responsible for some automatic reflex actions. Such networks can generate a complex temporal pattern of action potentials that is used to coordinate muscular contractions, such as those involved in breathing or fast swimming to escape a predator.

<span class="mw-page-title-main">Dendritic spike</span> Action potential generated in the dendrite of a neuron

In neurophysiology, a dendritic spike refers to an action potential generated in the dendrite of a neuron. Dendrites are branched extensions of a neuron. They receive electrical signals emitted from projecting neurons and transfer these signals to the cell body, or soma. Dendritic signaling has traditionally been viewed as a passive mode of electrical signaling. Unlike its axon counterpart which can generate signals through action potentials, dendrites were believed to only have the ability to propagate electrical signals by physical means: changes in conductance, length, cross sectional area, etc. However, the existence of dendritic spikes was proposed and demonstrated by W. Alden Spencer, Eric Kandel, Rodolfo Llinás and coworkers in the 1960s and a large body of evidence now makes it clear that dendrites are active neuronal structures. Dendrites contain voltage-gated ion channels giving them the ability to generate action potentials. Dendritic spikes have been recorded in numerous types of neurons in the brain and are thought to have great implications in neuronal communication, memory, and learning. They are one of the major factors in long-term potentiation.

The activating function is a mathematical formalism that is used to approximate the influence of an extracellular field on an axon or neurons. It was developed by Frank Rattay and is a useful tool to approximate the influence of functional electrical stimulation (FES) or neuromodulation techniques on target neurons. It points out locations of high hyperpolarization and depolarization caused by the electrical field acting upon the nerve fiber. As a rule of thumb, the activating function is proportional to the second-order spatial derivative of the extracellular potential along the axon.

Network of human nervous system comprises nodes that are connected by links. The connectivity may be viewed anatomically, functionally, or electrophysiologically. These are presented in several Wikipedia articles that include Connectionism, Biological neural network, Artificial neural network, Computational neuroscience, as well as in several books by Ascoli, G. A. (2002), Sterratt, D., Graham, B., Gillies, A., & Willshaw, D. (2011), Gerstner, W., & Kistler, W. (2002), and Rumelhart, J. L., McClelland, J. L., and PDP Research Group (1986) among others. The focus of this article is a comprehensive view of modeling a neural network. Once an approach based on the perspective and connectivity is chosen, the models are developed at microscopic, mesoscopic, or macroscopic (system) levels. Computational modeling refers to models that are developed using computing tools.

<span class="mw-page-title-main">Theta model</span>

The theta model, or Ermentrout–Kopell canonical model, is a biological neuron model originally developed to mathematically describe neurons in the animal Aplysia. The model is particularly well-suited to describe neural bursting, which is characterized by periodic transitions between rapid oscillations in the membrane potential followed by quiescence. This bursting behavior is often found in neurons responsible for controlling and maintaining steady rhythms such as breathing, swimming, and digesting. Of the three main classes of bursting neurons, the theta model describes parabolic bursting, which is characterized by a parabolic frequency curve during each burst.

Exponential integrate-and-fire models are compact and computationally efficient nonlinear spiking neuron models with one or two variables. The exponential integrate-and-fire model was first proposed as a one-dimensional model. The most prominent two-dimensional examples are the adaptive exponential integrate-and-fire model and the generalized exponential integrate-and-fire model. Exponential integrate-and-fire models are widely used in the field of computational neuroscience and spiking neural networks because of (i) a solid grounding of the neuron model in the field of experimental neuroscience, (ii) computational efficiency in simulations and hardware implementations, and (iii) mathematical transparency.

The quadratic integrate and fire (QIF) model is a biological neuron model that describes action potentials in neurons. In contrast to physiologically accurate but computationally expensive neuron models like the Hodgkin–Huxley model, the QIF model seeks only to produce action potential-like patterns by ignoring the dynamics of transmembrane currents and ion channels. Thus, the QIF model is computationally efficient and has found ubiquitous use in computational neuroscience.

References

  1. 1 2 3 4 5 6 Ermentrout, Bard; Terman H. David (2010). Mathematical Foundations of Neuroscience . Springer. pp.  29–45. ISBN   978-0-387-87707-5.
  2. 1 2 Lindsay, A. E., Lindsay, K. A., & Rosenberg, J. R. (2005). Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization. Journal of Computational Neuroscience, 19(1), 21–38.
  3. 1 2 3 4 5 6 7 8 Poirazi, P. (2009). Information Processing in Single Cells and Small Networks: Insights from Compartmental Models. In G. Maroulis & T. E. Simos (Eds.), Computational Methods in Science and Engineering, Vol 1 (Vol. 1108, pp. 158–167).
  4. 1 2 3 4 Kuznetsova, A. Y., Huertas, M. A., Kuznetsov, A. S., Paladini, C. A., & Canavier, C. C. (2010). Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. Journal of Computational Neuroscience, 28(3), 389–403.
  5. 1 2 3 4 5 Svensson, C. M., & Coombes, S. (2009). MODE LOCKING IN A SPATIALLY EXTENDED NEURON MODEL: ACTIVE SOMA AND COMPARTMENTAL TREE. International Journal of Bifurcation and Chaos, 19(8), 2597–2607.
  6. Rempe, M. J., Spruston, N., Kath, W. L., & Chopp, D. L. (2008). Compartmental neural simulations with spatial adaptivity. Journal of Computational Neuroscience, 25(3), 465–480.
  7. 1 2 3 Ibarz, J. M., & Herreras, O. (2003). A study of the action potential initiation site along the axosomatodendritic axis of neurons using compartmental models. In J. Mira & J. R. Alvarez (Eds.), Computational Methods in Neural Modeling, Pt 1 (Vol. 2686, pp. 9–15).
  8. Schilstra, M., Rust, A., Adams, R., & Bolouri, H. (2002). A finite state automaton model for multi-neuron simulations. Neurocomputing, 44, 1141–1148.
  9. Gold, C., Henze, D. A., & Koch, C. (2007). Using extracellular action potential recordings to constrain compartmental models. Journal of Computational Neuroscience, 23(1), 39–58.
  10. Keren, N., Peled, N., & Korngreen, A. (2005). Constraining compartmental models using multiple voltage recordings and genetic algorithms. Journal of Neurophysiology, 94(6), 3730–3742.
  11. Markaki, M., Orphanoudakis, S., & Poirazi, P. (2005). Modelling reduced excitability in aged CA1 neurons as a calcium-dependent process. Neurocomputing, 65, 305–314.
  12. Grunditz, A., Holbro, N., Tian, L., Zuo, Y., & Oertner, T. G. (2008). Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization. Journal of Neuroscience, 28(50), 13457–13466.
  13. Elyada, Y. M., Haag, J., & Borst, A. (2009). Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons. Nature Neuroscience, 12(3), 327–332.
  14. Hendrickson, E. B., Edgerton, J. R., & Jaeger, D. (2011). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. Journal of Computational Neuroscience, 30(2), 301–321.