This article needs additional citations for verification .(May 2021) |
"Complexity, Problem Solving, and Sustainable Societies" is a paper on energy economics by Joseph Tainter from 1996. [1]
It focuses on the energy cost of problem solving, and the energy-complexity relation in manmade systems. This is a mirror of the negentropic tendencies of natural evolution, according to ecological economics, notably the arguments of Donella Meadows and her colleagues on the economic constraints of contemporary problem solving.
The Limits to Growth , 1972, argued that "to raise world food production from 1951-1966 by 34%, for example, required increasing expenditures on tractors of 63%, on nitrate fertilizers of 146%, and on pesticides of 300%. To remove all organic wastes from a sugar-processing plant costs 100 times more than removing 30%. To reduce sulfur dioxide in the air of a U.S. city by 9.6 times, or particulates by 3.1 times, raises the cost of pollution control by 520 times." All environmental problem solving will face constraints of this kind, Tainter argues. It is not a question of expending a lot of energy to discover "more efficient" ways to do these things - that process amplifies the decline.
Attempts to impose the "most efficient" means have other problems. In The Rise and Decline of Nations , Mancur Olson argues that "bureaucratic regulation itself generates further complexity and costs. [2] As regulations are issued and taxes established, those who are regulated or taxed seek loopholes and lawmakers strive to close these. A competitive spiral of loophole discovery and closure unfolds, with complexity continuously increasing."
"In these days when the cost of government lacks political support," Tainter argues, "such a strategy is unsustainable. It is often suggested that environmentally benign behavior should be elicited through taxation incentives rather than through regulations. While this approach has some advantages, it does not address the problem of complexity, and may not reduce overall regulatory costs as much as is thought. Those costs may only be shifted to the taxation authorities, and to the society as a whole.
It is not that research, education, regulation, and new technologies cannot potentially alleviate our problems. With enough investment perhaps they can. The difficulty is that these investments will be costly, and may require an increasing share of each nation's gross domestic product. With diminishing returns to problem solving, addressing environmental issues in our conventional way means that more resources will have to be allocated to science, engineering, and government. In the absence of high economic growth this would require at least a temporary decline in the standard of living, as people would have comparatively less to spend on food, housing, clothing, medical care, transportation, and entertainment."
"To circumvent costliness in problem solving it is often suggested that we use resources more intelligently and efficiently," Tainter continues, but cites Timothy F. H. Allen and Thomas Hoekstra, 1992, as claiming that "in managing ecosystems for sustainability, managers should identify what is missing from natural regulatory process and provide only that. The ecosystem will do the rest. Let the ecosystem (i.e., solar energy) subsidize the management effort rather than the other way around." [3] This was later to be a cornerstone of the economic strategy of natural capitalism.
Tainter argues that this would "require much knowledge that we do not now possess. That means we need research that is complex and costly, and requires fossil fuel subsidies. Lowering the costs of complexity in one sphere causes them to rise in another."
"Industrialism illustrates this point. It generated its own problems of complexity and costliness. These included railways and canals to distribute coal and manufactured goods, the development of an economy increasingly based on money and wages, and the development of new technologies. While such elements of complexity are usually thought to facilitate economic growth, in fact they can do so only when subsidized by energy." (italics ours).
This is the central argument Tainter makes: the energy economy always subsidizes the product economy and service economy, and any intermediates such as commodity markets. Without looking at energy costs at every trophic level, and the transfer between, which appears to be decreasing as more technology is applied, there is simply no way to discover what is and is not "efficient".
"With subsidies of inexpensive fossil fuels, for a long time many consequences of industrialism effectively did not matter. Industrial societies could afford them. When energy costs are met easily and painlessly, benefit/cost ratio to social investments can be substantially ignored (as it has been in contemporary industrial agriculture). Fossil fuels made industrialism, and all that flowed from it (such as science, transportation, medicine, employment, consumerism, high-technology war, and contemporary political organization), a system of problem solving that was sustainable for several generations."
"Energy has always been the basis of cultural complexity and it always will be."
Tainter concludes that considerable hardship will be required to adjust to an economy that is (a) smaller (b) reliant more on individuals to carry out their own primary production, say in gardens and farms (c) not investing in problem solving to a greater extent than is warranted by the actual savings in energy that result out the other end.
Environmental economics is a sub-field of economics concerned with environmental issues. It has become a widely studied subject due to growing environmental concerns in the twenty-first century. Environmental economics "undertakes theoretical or empirical studies of the economic effects of national or local environmental policies around the world. ... Particular issues include the costs and benefits of alternative environmental policies to deal with air pollution, water quality, toxic substances, solid waste, and global warming."
In economics, an externality or external cost is an indirect cost or benefit to an uninvolved third party that arises as an effect of another party's activity. Externalities can be considered as unpriced components that are involved in either consumer or producer market transactions. Air pollution from motor vehicles is one example. The cost of air pollution to society is not paid by either the producers or users of motorized transport to the rest of society. Water pollution from mills and factories is another example. All (water) consumers are made worse off by pollution but are not compensated by the market for this damage. A positive externality is when an individual's consumption in a market increases the well-being of others, but the individual does not charge the third party for the benefit. The third party is essentially getting a free product. An example of this might be the apartment above a bakery receiving some free heat in winter. The people who live in the apartment do not compensate the bakery for this benefit.
In neoclassical economics, market failure is a situation in which the allocation of goods and services by a free market is not Pareto efficient, often leading to a net loss of economic value. The first known use of the term by economists was in 1958, but the concept has been traced back to the Victorian philosopher Henry Sidgwick. Market failures are often associated with public goods, time-inconsistent preferences, information asymmetries, non-competitive markets, principal–agent problems, or externalities.
A subsidy or government incentive is a type of government expenditure for individuals and households, as well as businesses with the aim of stabilizing the economy. It ensures that individuals and households are viable by having access to essential goods and services while giving businesses the opportunity to stay afloat and/or competitive. Subsidies not only promote long term economic stability but also help governments to respond to economic shocks during a recession or in response to unforeseen shocks, such as the COVID-19 pandemic.
Ecological economics, bioeconomics, ecolonomy, eco-economics, or ecol-econ is both a transdisciplinary and an interdisciplinary field of academic research addressing the interdependence and coevolution of human economies and natural ecosystems, both intertemporally and spatially. By treating the economy as a subsystem of Earth's larger ecosystem, and by emphasizing the preservation of natural capital, the field of ecological economics is differentiated from environmental economics, which is the mainstream economic analysis of the environment. One survey of German economists found that ecological and environmental economics are different schools of economic thought, with ecological economists emphasizing strong sustainability and rejecting the proposition that physical (human-made) capital can substitute for natural capital.
Eco-capitalism, also known as environmental capitalism or (sometimes) green capitalism, is the view that capital exists in nature as "natural capital" on which all wealth depends. Therefore, governments should use market-based policy-instruments to resolve environmental problems.
A green economy is an economy that aims at reducing environmental risks and ecological scarcities, and that aims for sustainable development without degrading the environment. It is closely related with ecological economics, but has a more politically applied focus. The 2011 UNEP Green Economy Report argues "that to be green, an economy must not only be efficient, but also fair. Fairness implies recognizing global and country level equity dimensions, particularly in assuring a Just Transition to an economy that is low-carbon, resource efficient, and socially inclusive."
Joseph Anthony Tainter is an American anthropologist and historian.
A steady-state economy is an economy made up of a constant stock of physical wealth (capital) and a constant population size. In effect, such an economy does not grow in the course of time. The term usually refers to the national economy of a particular country, but it is also applicable to the economic system of a city, a region, or the entire world. Early in the history of economic thought, classical economist Adam Smith of the 18th century developed the concept of a stationary state of an economy: Smith believed that any national economy in the world would sooner or later settle in a final state of stationarity.
The energy industry is the totality of all of the industries involved in the production and sale of energy, including fuel extraction, manufacturing, refining and distribution. Modern society consumes large amounts of fuel, and the energy industry is a crucial part of the infrastructure and maintenance of society in almost all countries.
Renewable energy commercialization involves the deployment of three generations of renewable energy technologies dating back more than 100 years. First-generation technologies, which are already mature and economically competitive, include biomass, hydroelectricity, geothermal power and heat. Second-generation technologies are market-ready and are being deployed at the present time; they include solar heating, photovoltaics, wind power, solar thermal power stations, and modern forms of bioenergy. Third-generation technologies require continued R&D efforts in order to make large contributions on a global scale and include advanced biomass gasification, hot-dry-rock geothermal power, and ocean energy. In 2019, nearly 75% of new installed electricity generation capacity used renewable energy and the International Energy Agency (IEA) has predicted that by 2025, renewable capacity will meet 35% of global power generation.
Carbon pricing is a method for governments to mitigate climate change, in which a monetary cost is applied to greenhouse gas emissions. This is done to encourage polluters to reduce fossil fuel combustion, the main driver of climate change. A carbon price usually takes the form of a carbon tax, or an emissions trading scheme (ETS) that requires firms to purchase allowances to emit. The method is widely agreed to be an efficient policy for reducing greenhouse gas emissions. Carbon pricing seeks to address the economic problem that emissions of CO2 and other greenhouse gases are a negative externality – a detrimental product that is not charged for by any market.
An environmental enterprise is an environmentally friendly/compatible business. Specifically, an environmental enterprise is a business that produces value in the same manner which an ecosystem does, neither producing waste nor consuming unsustainable resources. In addition, an environmental enterprise rather finds alternative ways to produce one's products instead of taking advantage of animals for the sake of human profits. To be closer to the goal of being an environmentally friendly company, some environmental enterprises invest their money to develop or improve their technologies which are also environmentally friendly. In addition, environmental enterprises usually try to reduce global warming, so some companies use materials that are environmentally friendly to build their stores. They also set in place regulations that are environmentally friendly. All these efforts of the environmental enterprises can bring positive effects both for nature and people. The concept is rooted in the well-enumerated theories of natural capital, the eco-economy and cradle to cradle design.
Degrowth is an academic and social movement critical of the concept of growth in gross domestic product as a measure of human and economic development. The idea of degrowth is based on ideas and research from economic anthropology, ecological economics, environmental sciences, and development studies. It argues that modern capitalism's unitary focus on growth causes widespread ecological damage and is unnecessary for the further increase of human living standards. Degrowth theory has been met with both academic acclaim and considerable criticism.
Sustainability is a social goal for people to co-exist on Earth over a long period of time. Definitions of this term are disputed and have varied with literature, context, and time. Sustainability usually has three dimensions : environmental, economic, and social. Many definitions emphasize the environmental dimension. This can include addressing key environmental problems, including climate change and biodiversity loss. The idea of sustainability can guide decisions at the global, national, organizational, and individual levels. A related concept is that of sustainable development, and the terms are often used to mean the same thing. UNESCO distinguishes the two like this: "Sustainability is often thought of as a long-term goal, while sustainable development refers to the many processes and pathways to achieve it."
The history of environmental pollution traces human-dominated ecological systems from the earliest civilizations to the present day. This history is characterized by the increased regional success of a particular society, followed by crises that were either resolved, producing sustainability, or not, leading to decline. In early human history, the use of fire and desire for specific foods may have altered the natural composition of plant and animal communities. Between 8,000 and 12,000 years ago, agrarian communities emerged which depended largely on their environment and the creation of a "structure of permanence."
The economics of climate change mitigation is a contentious part of climate change mitigation – action aimed to limit the dangerous socio-economic and environmental consequences of climate change.
The environmental sustainability problem has proven difficult to solve. The modern environmental movement has attempted to solve the problem in a large variety of ways. But little progress has been made, as shown by severe ecological footprint overshoot and lack of sufficient progress on the climate change problem. Something within the human system is preventing change to a sustainable mode of behavior. That system trait is systemic change resistance. Change resistance is also known as organizational resistance, barriers to change, or policy resistance.
In economic and environmental fields, decoupling refers to an economy that would be able to grow without corresponding increases in environmental pressure. In many economies, increasing production (GDP) raises pressure on the environment. An economy that would be able to sustain economic growth while reducing the amount of resources such as water or fossil fuels used and delink environmental deterioration at the same time would be said to be decoupled. Environmental pressure is often measured using emissions of pollutants, and decoupling is often measured by the emission intensity of economic output.
Green industrial policy (GIP) is strategic government policy that attempts to accelerate the development and growth of green industries to transition towards a low-carbon economy. Green industrial policy is necessary because green industries such as renewable energy and low-carbon public transportation infrastructure face high costs and many risks in terms of the market economy. Therefore, they need support from the public sector in the form of industrial policy until they become commercially viable. Natural scientists warn that immediate action must occur to lower greenhouse gas emissions and mitigate the effects of climate change. Social scientists argue that the mitigation of climate change requires state intervention and governance reform. Thus, governments use GIP to address the economic, political, and environmental issues of climate change. GIP is conducive to sustainable economic, institutional, and technological transformation. It goes beyond the free market economic structure to address market failures and commitment problems that hinder sustainable investment. Effective GIP builds political support for carbon regulation, which is necessary to transition towards a low-carbon economy. Several governments use different types of GIP that lead to various outcomes. The Green Industry plays a pivotal role in creating a sustainable and environmentally responsible future; By prioritizing resource efficiency, renewable energy, and eco-friendly practices, this industry significantly benefits society and the planet at large.