Computus clock

Last updated
The monumental astronomical computus clock of Strasbourg Cathedral made by Jean-Baptiste Schwilgue. Black markers show the dates of moveable feasts including Easter on the annual calendar ring. Schwilgue's computus is on the left. Detail de l'horloge astronomique (33813156156).jpg
The monumental astronomical computus clock of Strasbourg Cathedral made by Jean-Baptiste Schwilgué. Black markers show the dates of moveable feasts including Easter on the annual calendar ring. Schwilgué's computus is on the left.

A computus clock is a clock equipped with a mechanism that automatically calculates and displays, or helps determine, the date of Easter (and other dependent dates of moveable Church feasts). A computus watch carries out the same function.

Contents

Background

The movement of a computus clock provides and/or calculates astronomical and calendar information according to the tradition that Easter Sunday is the first Sunday after the first full moon (Paschal or ecclesiastical full moon) on or after the spring equinox (21 March), and Easter Sunday should not occur on the same day as the Jewish calendar date Nisan 15th, the first day of Passover week. In early Christianity, the Easter date was calculated each year and announced by the Pope. The later need for Christian clergy living in different territories to be able to calculate the Easter date for themselves forced attempts to establish clear rules for the Easter date calculation and finally the algorithms for this.

The determination of the Easter date requires calculating astronomical and calendar cycles – the annual motion of the Sun round the celestial sphere, the evolution of the phases of the Moon, the cycle of the days of the week, particularities of calendars and some agreements like the date of the so-called ecclesiastical equinox., [1] designated as March 21, irrespective of the actual astronomical observation by the Church of Alexandria in the beginning of the 4th Century.

Specific astronomical data which may be incorrect, misinterpreted or location dependent, were eliminated from the Easter date calculation by the invention of special paschal functions – “letters” and “numbers”. [2] They include the “golden number” (which gives the dates of all the new moons for the year in a 19-year Metonic cycle), the solar cycle (the 28-year cycle of the Julian calendar and 400-year cycle of the Gregorian calendar with respect to the week), the epact (the age of the Moon in days on a certain date), the dominical letter (used to determine the day of the week for particular dates) and the indiction (the number of a given year in a fifteen-year period). The computations after the Gregorian reform of 1582 should also take into account additional corrections necessary due to particularities of the Gregorian calendar, notably the solar equation (taking into account some non-leap century years) and the lunar equation (for correction of the Metonic cycle) [3]

The term “computus” as the description of the Easter date computation was proposed in 725 by the English Benedictine monk Bede in his treatise “De temporum ratione” (“The Reckoning of Time”). [4] Alexandrian computus, based on rules established by the Church of Alexandria, was universally used from the beginning of the 8th century until the Gregorian calendar reform of 1582. The Roman Catholic Church has used the Gregorian calendar, and accordingly Gregorian computus, to calculate the dates of Easter since 1583. The Gregorian computus was later adopted by most Protestant churches – between 1753 and 1845 – while most Eastern Churches, including the majority of Eastern Orthodox Churches and Non-Chalcedonian Churches continued to produce the Easter date computation based on the Julian calendar (Alexandrian computus), although both had and indeed still have some complications, described in detail in dedicated studies.

The Alexandrian computus gives a 532-year period of Easter dates. Given that all possible dates on which Easter can occur lie within a 35-day period – from March 22 to April 25 (old style dates) or from April 4 to May 8 (new style dates) – the Alexandrian Easter algorithm is equivalent to 18620 options (532 x 35), showing the complexity of computus implementation in a compact clockwork. The Gregorian Easter algorithm gives even more options due to the fact that the duration of the period is 5,700,000 years (70,499,183 lunar months or 2,081,882,250 days). The German mathematician Karl Gauss presented a computus algorithm in 1800 [5] and finalized it in 1807 and 1811. Gauss’ algorithm is considered to be the most commonly used and although it was intended for calculating the Easter date for the Gregorian calendar, it is also valid for the calculation of the Easter date for the Julian calendar.

The indication of the date of the upcoming Easter is one of the rarest astronomical functions of mechanical clocks and watches due to the high levels of complexity involved. Moreover, there is significant discrepancy in computus algorithms due to the differences of the Julian and Gregorian calendars (Easter controversy). The obvious difficulties in implementing computus algorithms in clockwork explain the fact that in the entire history of mechanical clocks and watchmaking, just a few examples of computus clocks and watches have been made.

Computus clock types

Tabular computus clocks

Clocks with a tabular computus provide the indication of special paschal (ecclesiastical) functions without the automatic counting of the date of Easter, so the date should be determined by the paschal table with the use of indications - the golden number, the solar cycle, the epact, the dominical letter, and the indiction – all or some of which, may be with the addition of other indications. It is believed the first Easter function in a mechanical clock was created by the Italian physician, astronomer and mechanical engineer Giovanni Dondi dell'Orologio from Padua. He built his complicated astronomical clock “Astrarium” from 1348 to 1364. The clock has not survived, but the design and construction were described in detail by Dondi in his manuscripts [6] and provided enough material for modern clockmakers to build reconstructions. [7] While few reconstructions have been made, one example of Dondi's computus can be found in the Smithsonian Institution (Washington DC, USA). Dondi's computus was based on a device with a wheel drive and three chain indicators of the 7980-year Julian period. The first chain with 28 links was used to indicate the dominical letter and the 28-year solar cycle, the second chain with 19 links was used to indicate the golden number, and the third chain was used for the 15-year cycle of indiction. [8] The computus was set under the date display ring, which was designed for a 365-day year (in the leap year, Giovanni de Dondi intended to stop the clock for one day).

A tabular computus with indications of the dominical letter, the epact, the 28-year solar cycle, the golden number and the indiction was made by the French clockmaker Auguste-Lucien Vérité in his monumental astronomical pendulum clock of Besançon Cathedral (France). Built from 1858 to 1860, the clock's epact dial has an additional indication of Easter dates for a period of 19 years on cartouches, which should be replaced or repainted every 19 years by the keeper of the clock.

Ecclesiastical functions of the 28-year solar cycle, the Julian epact, the Gregorian epact, the Julian dominical letter, the Gregorian dominical letter, the golden number and the indiction were implemented by the Swiss watchmaker Albert Billeter in his supercomplicated monumental “Ivanovo” Universal Clock, which he made in 1873 in Paris and which is kept in Ivanovo Museum of Industry and Arts (also known as the D.G.Burylin Museum, Ivanovo, Russia). [9] [10]

The French clockmaker Paul Pouvillon [11] included a computus module in his complicated astronomical clock with orrery, [12] made from 1918 to at least 1939 (and probably into the 1960s). The module has a single indicator of the Gregorian Easter date in a window with a disc underneath, stamped with the Easter dates for the 19-year period from 1946 to 1964. The moveable feast's indicator is set on the tellurium dial, and its adjustment to correct the dates should be made manually. The computus module has 6 ecclesiastical functions – the 28-year solar cycle, the Gregorian epact, the Gregorian dominical letter, the golden number, the indiction and the indication of the day of the week of January 1 of the next year, so the computation of the Easter date may be provided with the help of the ecclesiastical functions even for the years after 1964, when the original Easter date disc is no more valid, as noted during restoration works in 2011–2012. [13]

Indications of the 28-year solar cycle, golden number and indiction were used by the Norwegian clockmaker and inventor Rasmus Jonassen Sørnes in his complicated astronomical pendulum clock No.4 (Sørnes No.4), built from 1958 to 1966.

Computus clocks with automatic mechanical counting devices

The most complicated type of computus clock is rather a kind of mechanical computer making automatic Easter calculations based on ecclesiastical indications at the beginning of a given year.

The first computus clock with a fully automatic action was made by the French clockmaker and inventor Jean-Baptiste Schwilgué, the author of the third astronomical clock of Strasbourg Cathedral (Strasbourg astronomical clock), [14] between 1838 and 1843. In 1816 he invented and built the first prototype of his mechanical computus “Comput ecclésiastique”, and in 1821 he made the final calculations and design of his device, acting as a Gregorian computus. Schwilgué embedded his computus into the astronomical clock of Strasbourg Cathedral, where it continues to operate to this day. It includes 5 ecclesiastical functions – the 28-year solar cycle, the Gregorian epact, the Gregorian dominical letter, the golden number and the indiction, with the addition of a 4-digit Gregorian year indicator. [15] At the start of each year, the computus changes the indications of the dates of Easter and moveable feasts on the annual calendar ring of the main dial in the central lower part of the clock. [16]

The Danish clockmaker Jens Olsen, while visiting Strasbourg in 1897, was inspired by Jean-Baptiste Schwilgué's astronomical clock of Strasbourg Cathedral and in 1924 he completed a separate computus module (“Comput ecclésiastique”), that has certain similarities to Schwilgué's “Comput ecclésiastique”. Later, in 1928, Jens Olsen made the calculations of a supercomplicated astronomical computus clock. The clock, known as “World Clock” (in Danish, “Verdensuret”), was finished in 1955, 10 years after his death, by his colleague Otto Mortensen, who took over the project. [17] The clock is displayed in Copenhagen's Rådhus (City Hall). [18] The computus of Jens Olsen's World Clock has 5 ecclesiastical functions – the Gregorian dominical letter, the Gregorian epact, the 28-year solar cycle, the indiction and the golden number, while the clock is also equipped with a Gregorian perpetual calendar indicating the date, day of the week, month and the year in four digits. Beneath the ecclesiastical dials there is an unparalleled tabular calendar showing the dates and days of the week of all 12 months of the year, the phases of the Moon for every date, and the dates of Easter and other moveable feasts. The computus and Gregorian perpetual calendar automatically switch at midnight at New Year to calculate the calendar for the following year.

The French clockmaker Daniel Marius Vachey  [ fr ] also took his inspiration from the works of Jean-Baptiste Schwilgué and his astronomical clock of Strasbourg Cathedral. Vachey spent thirty years – from 1938 to 1968 – building his supercomplicated astronomical computus clock. [19] The computus of the clock has 5 ecclesiastical functions – the Gregorian dominical letter, the Gregorian epact, the 28-year solar cycle, the indiction and the golden number. The clock is also equipped with a dial for 6 moveable feasts and a perpetual calendar with date, day of the week, month and bissextile year indicators.

Computus clock with opto-mechanical indication

The Easter date in a computus clock with an opto-mechanical indication is shown by the superposition of the matching holes of perforated discs. This type of display has also been used to indicate the date of Orthodox Easter. [20] An opto-mechanical Easter date display was built into this “Easter of Christ Computus Clock” clock of 2005, the first computus clock of this type invented and made by Russian watch- and clockmaker Konstantin Chaykin.

Orthodox computus clocks

A mechanical Orthodox computus was developed by Konstantin Chaykin using a novel computus algorithm, that differs from Carl Friedrich Gauss's algorithm. The computus mechanism mechanically calculates the Orthodox Easter date at midnight at New Year and sets the calendar for the following year by means of three cam wheels, springs, levers, racks and three differential gears. In total, the computus mechanism consists of more than 300 parts. The Orthodox computus has been used in a series of Chaykin's astronomical desk clocks – the “Resurrection Computus Clock” (2007), the “Northern Computus Clock” (2015) and the supercomplicated “Moscow Computus Clock” (2016).

Computus clock/watch with a program cam wheel mechanism

This type of computus mechanism does not provide a mechanical calculation of the Easter date, but shows it by means of a program cam wheel, since the complicated design of a counting computus makes it difficult to integrate into the compact movement of a pocket watch and, in particular, a wristwatch. The only known example of a pocket watch with an indication of the Easter date according to the Gregorian calendar is the supercomplication “Calibre 89” pocket watch by the Swiss company Patek Philippe. Four copies of the “Calibre 89” and one functioning prototype were made in 1989 (the prototype is stored in the Patek Philippe Museum in Geneva, [21] Switzerland). The Easter date display uses a program cam wheel valid for 28 years. It is assumed that this will be replaced as each term for its correct operation expires.

An extended program cam wheel mechanism was used in the display of the Easter date in the monumental astronomical clock of Beauvais Cathedral (France), built by the French clockmaker Auguste-Lucien Vérité from 1865 to 1868. The cam wheel is calculated for a period of 300 years, [22] and the computus also has dials for indications of the dominical letter, the epact, the 28-year solar cycle, the golden number and the indiction.

A separated computus module

Separated computus module is produced to demonstrate the principle action of a computus device of a clock, to try and check the complicated mechanism. Separated modules are quite remarkable because just a few examples have ever been produced. The world's first computus module, realizing the Gregorian computus algorithm, was invented, designed and made by the French clockmaker Jean-Baptiste Schwilgué (“Comput ecclésiastique”, 1821, which was stolen from Strasbourg Cathedral in 1944, with the present location unknown). Subsequently, separated computus modules were made by the Danish clockmaker Jens Olsen (also called “Comput ecclésiastique”; 1924), and by the French watchmaker Frédéric Klinghammer, who reproduced Schwilgué's “Comput ecclésiastique” in a reduced scale (“Comput de Klinghammer”; 1977). The Russian watchmaker Konstantin Chaykin made an Orthodox computus module (“Comput Orthodoxe”) in 2007 to demonstrate the principle action of the mechanical Orthodox computus he had invented.

Related Research Articles

<span class="mw-page-title-main">Lunisolar calendar</span> Calendar with lunar month, solar year

A lunisolar calendar is a calendar in many cultures, incorporating lunar calendars and solar calendars. The date of lunisolar calendars therefore indicates both the Moon phase and the time of the solar year, that is the position of the Sun in the Earth's sky. If the sidereal year is used instead of the solar year, then the calendar will predict the constellation near which the full moon may occur. As with all calendars which divide the year into months there is an additional requirement that the year have a whole number of months. In some case ordinary years consist of twelve months but every second or third year is an embolismic year, which adds a thirteenth intercalary, embolismic, or leap month.

<span class="mw-page-title-main">New moon</span> First lunar phase, the definition varies

In astronomy, the new moon is the first lunar phase, when the Moon and Sun have the same ecliptic longitude. At this phase, the lunar disk is not visible to the naked eye, except when it is silhouetted against the Sun during a solar eclipse.

Reform of the date of Easter refers to proposals to change the date for the annual celebration of Easter. These proposals include setting a fixed date or agreeing between Eastern and Western Christendom a common basis for calculating the date of Easter so that all Christians celebrate the Festival on the same day. As of 2023, no such agreement has been reached.

The Julian day is the continuous count of days since the beginning of the Julian period, and is used primarily by astronomers, and in software for easily calculating elapsed days between two events.

<span class="mw-page-title-main">Dionysius Exiguus</span> Byzantine saint (c. 470 – c. 544)

Dionysius Exiguus was a 6th-century Eastern Roman monk born in Scythia Minor. He was a member of a community of Scythian monks concentrated in Tomis, the major city of Scythia Minor. Dionysius is best known as the inventor of Anno Domini (AD) dating, which is used to number the years of both the Gregorian calendar and the (Christianised) Julian calendar. Almost all churches adopted his computus for the dates of Easter.

<span class="mw-page-title-main">Date of Easter</span>

As a moveable feast, the date of Easter is determined in each year through a calculation known as computus. Easter is celebrated on the first Sunday after the Paschal full moon. Determining this date in advance requires a correlation between the lunar months and the solar year, while also accounting for the month, date, and weekday of the Julian or Gregorian calendar. The complexity of the algorithm arises because of the desire to associate the date of Easter with the date of the Jewish feast of Passover which, Christians believe, is when Jesus was crucified.

The epact used to be described by medieval computists as the age of a phase of the Moon in days on 22 March; in the newer Gregorian calendar, however, the epact is reckoned as the age of the ecclesiastical moon on 1 January. Its principal use is in determining the date of Easter by computistical methods. It varies from year to year, because of the difference between the solar year of 365–366 days and the lunar year of 354–355 days.

Dominical letters or Sunday letters are a method used to determine the day of the week for particular dates. When using this method, each year is assigned a letter depending on which day of the week the year starts. The Dominical letter for the current year 2024 is GF.

<span class="mw-page-title-main">Astronomical clock</span> Clock with special mechanisms and dials to display astronomical information

An astronomical clock, horologium, or orloj is a clock with special mechanisms and dials to display astronomical information, such as the relative positions of the Sun, Moon, zodiacal constellations, and sometimes major planets.

The controversy over the correct date for Easter began in Early Christianity as early as the 2nd century AD. Discussion and disagreement over the best method of computing the date of Easter Sunday has been ongoing ever since and remains unresolved. Different Christian denominations continue to celebrate Easter on different dates, with Eastern and Western Christian churches being a notable example.

<span class="mw-page-title-main">Strasbourg astronomical clock</span> Historic clock in France

The Strasbourg astronomical clock is located in the Cathédrale Notre-Dame of Strasbourg, Alsace, France. It is the third clock on that spot and dates from the time of the first French possession of the city (1681–1870). The first clock had been built in the 14th century and the second in the 16th century when Strasbourg was a Free imperial city of the Holy Roman Empire.

<span class="mw-page-title-main">Rasmus Sørnes</span> Norwegian clockmaker

Rasmus Jonassen Sørnes, was a Norwegian inventor, clockmaker and radio technician, and is most famous for his advanced astronomical clocks, the most precise of which has an inaccuracy of 7 seconds during 1000 years. During his lifetime, Sørnes also designed and built a large variety of agricultural, radio-technical and mechanical devices, only a few of them patented.

<span class="mw-page-title-main">Astrarium</span> Timepiece and astronomical prediction device

An astrarium, also called a planetarium, is a medieval astronomical clock made in the 14th century by Italian engineer and astronomer Giovanni Dondi dell'Orologio. The Astrarium was modeled after the solar system and, in addition to counting time and representing calendar dates and holidays, showed how the planets moved around the celestial sphere in one timepiece. This was its main task, in comparison with the astronomical clock, the main task of which is the actual reading of time. A complex mechanism, it combined the functions of a modern planetarium, clock, and calendar into a singular constructive device. Devices that perform this function were known to have been created prior to the design of Dondi, though relatively little is known about them. It is occasionally erroneously claimed by the details of some sources that the Astrarium was the first mechanical device showing the movements of the planets.

<span class="mw-page-title-main">Zimmer tower</span> Tower in Lier, Belgium

The Zimmer tower is a tower in Lier, Belgium, also known as the Cornelius tower, that was originally a keep of Lier's 14th-century city fortifications. In 1930, astronomer and clockmaker Louis Zimmer (1888–1970) built the Jubilee Clock, which is displayed on the front of the tower, and consists of 12 clocks encircling a central one with 57 dials. These clocks showed time on all continents, phases of the moons, times of tides and many other periodic phenomena.

Klinghammer's computus is a mechanism determining the elements of the computus, in particular the date of Easter in the Gregorian calendar. This mechanism was built in the 1970s by Frédéric Klinghammer (1908–2006) and is nearly a reduced model of the computus found on the Strasbourg cathedral astronomical clock.

An ecclesiastical full moon is formally the 14th day of the ecclesiastical lunar month in an ecclesiastical lunar calendar. The ecclesiastical lunar calendar spans the year with lunar months of 30 and 29 days which are intended to approximate the observed phases of the Moon. Since a true synodic month has a length that can vary from about 29.27 to 29.83 days, the moment of astronomical opposition tends to be roughly 14.75 days after the previous conjunction of the Sun and Moon. The ecclesiastical full moons of the Gregorian lunar calendar tend to agree with the dates of astronomical opposition, referred to a day beginning at midnight at 0 degrees longitude, to within a day or so. However, the astronomical opposition happens at a single moment for the entire Earth: The hour and day at which the opposition is measured as having taken place will vary with longitude. In the ecclesiastical calendar, the 14th day of the lunar month, reckoned in local time, is considered the day of the full moon at each longitude.

The Gregorian calendar is the calendar used in most parts of the world. It went into effect in October 1582 following the papal bull Inter gravissimas issued by Pope Gregory XIII, which introduced it as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years differently so as to make the average calendar year 365.2425 days long, more closely approximating the 365.2422-day 'tropical' or 'solar' year that is determined by the Earth's revolution around the Sun.

<span class="mw-page-title-main">Astrarium of Giovanni Dondi dall'Orologio</span> Astronomical clock built in the 14th century

The Astrarium of Giovanni Dondi dall'Orologio was a complex astronomical clock built between 1348 and 1364 in Padova, Italy, by the doctor and clock-maker Giovanni Dondi dall'Orologio. The Astrarium had seven faces and 107 moving parts; it showed the positions of the sun, the moon and the five planets then known, as well as religious feast days. It was one of the first mechanical clocks to be built in Europe.

<span class="mw-page-title-main">Münster astronomical clock</span> Astronomical clock in Münster Cathedral, Germany

The Münster astronomical clock is an astronomical clock in Münster Cathedral in Münster, Germany.

References

  1. Woodman, C. E. Easter and the Ecclesiastical Calendar. Journal of the Royal Astronomical Society of Canada, Vol. 17, p.141 http://adsabs.harvard.edu/full/1923JRASC..17..141W
  2. Determination of Easter date. https://promenade.imcce.fr/en/pages4/442.html
  3. C. Philipp E. Nothaft (2018). Scandalous Error: Calendar Reform and Calendrical Astronomy in Medieval Europe. Oxford University Press.
  4. Bede. The Reckoning of Time. Liverpool University Press, 1999. Translated, with introduction, notes and commentary by Faith Wallis.
  5. Photocopy of the first page of Carl Friedrich Gauss’ article “Berechnung des Osterfestes”. http://webdoc.sub.gwdg.de/ebook/e/2005/gausscd/html/Osterformel/Seite1.htm
  6. Giovanni Dondi dall'Orologio. Tractatus astrarii. Edition critique et la traduction de la version A par Emmanuel Poulle. Librairie Droz S.A. Geneve, 2003.
  7. The list of reconstructions of the Astrarium clock of Giovanni de’Dondi may be found here: https://www.cabinet.ox.ac.uk/giovanni-dondis-astrarium-1364
  8. Silvio A. Bedini, Francis R. Maddison (1966). Mechanical Universe: The Astrarium of Giovanni de’ Dondi. Transactions of the American Philosophical Society, New Series vol. 56 (part 5). p. 46.
  9. The one and only Universal astronomic clock (in Russian). http://stylarium.ru/technics/69 Archived 2020-08-12 at the Wayback Machine
  10. Burylin's clock (in Russian). https://www.mkivanovo.ru/articles/2013/05/15/854279-chasyi-buryilina.html
  11. Brief biography of Paul Pouvillon and his clock. http://www.my-time-machines.net/pouvillon_restoration.htm
  12. Christie’s. A highly complicated weight-driven astronomical skeleton clock with orerry, lot 344, Sale 7822 Cabinet d'un Amateur Européen, London, 9 December 2009. https://www.christies.com/lotfinder/Lot/a-highly-complicated-weight-driven-astronomical-skeleton-clock-5279747-details.aspx
  13. Notes on restoration of Paul Pouvillon astronomic clock. http://www.my-time-machines.net/pouvillon_restoration1.htm
  14. Henri Bach, Jean-Pierre Rieb, Robert Wilhelm: Les trois horloges astronomiques de la cathédrale de Strasbourg, 1992.
  15. Alfred Ungerer, Théodore Ungerer: L'horloge astronomique de la cathédrale de Strasbourg, 1922.
  16. The video of Strasbourg astronomical clock functions, computus function starts at 3:25. https://www.youtube.com/watch?v=S13P_YfqVLo
  17. Otto Mortensen. Jens Olsen’s Clock – A Technical Description. Copenhagen, 1957.
  18. Jens Olsen's World Clock. https://cphmuseum.kk.dk/en/artikel/jens-olsens-world-clock Archived 2020-10-28 at the Wayback Machine
  19. Description of Daniel Marius Vachey astronomic computus clock. http://www.patrimoine-horloge.fr/as-vachey.html
  20. Patent RU2306618 «Calendar mechanism to calculate the Orthodox Easter date and dates of moveable feasts (vessions)» (in Russian) (published: 20.09.2007). https://new.fips.ru/iiss/document.xhtml?faces-redirect=true&id=f3d1b0b2bbaa72b581398781243f978d
  21. Patek Philippe Museum in Geneva (Switzerland). https://www.patek.com/en/company/patek-philippe-museum
  22. «Le cercle ainsi divisé n’est qu’une sorte le calendrier perpétuel sur lequel, chaque année, les fêtes mobiles viendront s’accuser chaqune à son jour. On sait qu’un certain nombre de fêtes relèvent de la grande solennité de Pâques; mais cette fête ne tombe point à jour fixe. […] Aussi M. Verité n’a-t-il point établi son méchanisme pour indiquer chaque année la fête de Pâques avec son ensemble de fêtes mobiles pour toute durée des siècles, mais seulement pour une période de 300 ans. A l’expiration de ce terme, une modification bien simple suffira pour permettre à ce cadran de reprendre ses fonctions pour trois siècles encore». – Auguste-Lucien Vérité, Description de l'horloge monumentale de la cathédrale de Beauvais, Imprimerie Alfred Caron fils et Cie, 1876, p. 34.