In number theory, a congruum (plural congrua) is the difference between successive square numbers in an arithmetic progression of three squares. That is, if , , and (for integers , , and ) are three square numbers that are equally spaced apart from each other, then the spacing between them, , is called a congruum.
The congruum problem is the problem of finding squares in arithmetic progression and their associated congrua. [1] It can be formalized as a Diophantine equation: find integers , , and such that
When this equation is satisfied, both sides of the equation equal the congruum.
Fibonacci solved the congruum problem by finding a parameterized formula for generating all congrua, together with their associated arithmetic progressions. According to this formula, each congruum is four times the area of a Pythagorean triangle. Congrua are also closely connected with congruent numbers: every congruum is a congruent number, and every congruent number is a congruum multiplied by the square of a rational number.
As an example, the number 96 is a congruum because it is the difference between adjacent squares in the sequence 4, 100, and 196 (the squares of 2, 10, and 14 respectively).
The first few congrua are:
The congruum problem was originally posed in 1225, as part of a mathematical tournament held by Frederick II, Holy Roman Emperor, and answered correctly at that time by Fibonacci, who recorded his work on this problem in his Book of Squares . [2]
Fibonacci was already aware that it is impossible for a congruum to itself be a square, but did not give a satisfactory proof of this fact. [3] Geometrically, this means that it is not possible for the pair of legs of a Pythagorean triangle to be the leg and hypotenuse of another Pythagorean triangle. A proof was eventually given by Pierre de Fermat, and the result is now known as Fermat's right triangle theorem. Fermat also conjectured, and Leonhard Euler proved, that there is no sequence of four squares in arithmetic progression. [4] [5]
The congruum problem may be solved by choosing two distinct positive integers and (with ); then the number is a congruum. The middle square of the associated arithmetic progression of squares is , and the other two squares may be found by adding or subtracting the congruum. Additionally, multiplying a congruum by a square number produces another congruum, whose progression of squares is multiplied by the same factor. All solutions arise in one of these two ways. [1] For instance, the congruum 96 can be constructed by these formulas with and , while the congruum 216 is obtained by multiplying the smaller congruum 24 by the square number 9.
An equivalent formulation of this solution, given by Bernard Frénicle de Bessy, is that for the three squares in arithmetic progression , , and , the middle number is the hypotenuse of a Pythagorean triangle and the other two numbers and are the difference and sum respectively of the triangle's two legs. [6] The congruum itself is four times the area of the same Pythagorean triangle. The example of an arithmetic progression with the congruum 96 can be obtained in this way from a right triangle with side and hypotenuse lengths 6, 8, and 10.
A congruent number is defined as the area of a right triangle with rational sides. Because every congruum can be obtained (using the parameterized solution) as the area of a Pythagorean triangle, it follows that every congruum is congruent. Conversely, every congruent number is a congruum multiplied by the square of a rational number. [7] However, testing whether a number is a congruum is much easier than testing whether a number is congruent. For the congruum problem, the parameterized solution reduces this testing problem to checking a finite set of parameter values. In contrast, for the congruent number problem, a finite testing procedure is known only conjecturally, via Tunnell's theorem, under the assumption that the Birch and Swinnerton-Dyer conjecture is true. [8]
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers or defined as generalizations of the integers.
A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.
A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime. For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. A triangle whose sides form a Pythagorean triple is called a Pythagorean triangle, and is necessarily a right triangle.
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. It is a method which relies on the well-ordering principle, and is often used to show that a given equation, such as a Diophantine equation, has no solutions.
In geometry, a Heronian triangle is a triangle whose side lengths a, b, and c and area A are all integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula.
A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.
In number theory, a congruent number is a positive integer that is the area of a right triangle with three rational number sides. A more general definition includes all positive rational numbers with this property.
A Pythagorean prime is a prime number of the form . Pythagorean primes are exactly the odd prime numbers that are the sum of two squares; this characterization is Fermat's theorem on sums of two squares.
In mathematics and statistics, sums of powers occur in a number of contexts:
In mathematics, a nonhypotenuse number is a natural number whose square cannot be written as the sum of two nonzero squares. The name stems from the fact that an edge of length equal to a nonhypotenuse number cannot form the hypotenuse of a right angle triangle with integer sides.
In number theory, Fermat's Last Theorem states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions.
In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being incommensurable, meaning that they share no "measure" in common, that is, there is no length, no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself.
Besides Euclid's formula, many other formulas for generating Pythagorean triples have been developed.
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides. This theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, often called the Pythagorean equation:
An integer triangle or integral triangle is a triangle all of whose sides have lengths that are integers. A rational triangle can be defined as one having all sides with rational length; any such rational triangle can be integrally rescaled to obtain an integer triangle, so there is no substantive difference between integer triangles and rational triangles in this sense. However, other definitions of the term "rational triangle" also exist: In 1914 Carmichael used the term in the sense that we today use the term Heronian triangle; Somos uses it to refer to triangles whose ratios of sides are rational; Conway and Guy define a rational triangle as one with rational sides and rational angles measured in degrees—in which case the only rational triangle is the rational-sided equilateral triangle.
Fermat's right triangle theorem is a non-existence proof in number theory, published in 1670 among the works of Pierre de Fermat, soon after his death. It is the only complete proof given by Fermat. It has several equivalent formulations, one of which was stated in 1225 by Fibonacci. In its geometric forms, it states:
In mathematics, statistics and elsewhere, sums of squares occur in a number of contexts:
In plane geometry, an automedian triangle is a triangle in which the lengths of the three medians are proportional to the lengths of the three sides, in a different order. The three medians of an automedian triangle may be translated to form the sides of a second triangle that is similar to the first one.
In number theory, the optic equation is an equation that requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c: