In probability theory, two sequences of probability measures are said to be contiguous if asymptotically they share the same support. Thus the notion of contiguity extends the concept of absolute continuity to the sequences of measures.
The concept was originally introduced by Le Cam (1960) as part of his foundational contribution to the development of asymptotic theory in mathematical statistics. He is best known for the general concepts of local asymptotic normality and contiguity. [1]
Let be a sequence of measurable spaces, each equipped with two measures Pn and Qn.
The notion of contiguity is closely related to that of absolute continuity. We say that a measure Q is absolutely continuous with respect to P (denoted Q ≪ P) if for any measurable set A, P(A) = 0 implies Q(A) = 0. That is, Q is absolutely continuous with respect to P if the support of Q is a subset of the support of P, except in cases where this is false, including, e.g., a measure that concentrates on an open set, because its support is a closed set and it assigns measure zero to the boundary, and so another measure may concentrate on the boundary and thus have support contained within the support of the first measure, but they will be mutually singular. In summary, this previous sentence's statement of absolute continuity is false. The contiguity property replaces this requirement with an asymptotic one: Qn is contiguous with respect to Pn if the "limiting support" of Qn is a subset of the limiting support of Pn. By the aforementioned logic, this statement is also false.
It is possible however that each of the measures Qn be absolutely continuous with respect to Pn, while the sequence Qn not being contiguous with respect to Pn.
The fundamental Radon–Nikodym theorem for absolutely continuous measures states that if Q is absolutely continuous with respect to P, then Q has density with respect to P, denoted as ƒ = dQ⁄dP, such that for any measurable set A
which is interpreted as being able to "reconstruct" the measure Q from knowing the measure P and the derivative ƒ. A similar result exists for contiguous sequences of measures, and is given by the Le Cam's third lemma.
For two sequences of measures on measurable spaces the following statements are equivalent: [4]
where and are random variables on .
Prohorov's theorem tells us that given a sequence of probability measures, every subsequence has a further subsequence which converges weakly. Le Cam's first lemma shows that the properties of the associated limit points determine whether contiguity applies or not. This can be understood in analogy with the non-asymptotic notion of absolute continuity of measures. [5]
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event.
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events.
A random variable is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' can be misleading as its mathematical definition is not actually random nor a variable, but rather it is a function from possible outcomes in a sample space to a measurable space, often to the real numbers.
In probability theory, a probability space or a probability triple is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die.
In probability theory, there exist several different notions of convergence of sequences of random variables. The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than others. For example, convergence in distribution tells us about the limit distribution of a sequence of random variables. This is a weaker notion than convergence in probability, which tells us about the value a random variable will take, rather than just the distribution.
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.
In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.
Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.
In information theory, the asymptotic equipartition property (AEP) is a general property of the output samples of a stochastic source. It is fundamental to the concept of typical set used in theories of data compression.
In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.
In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.
In the theory of probability, the Glivenko–Cantelli theorem, named after Valery Ivanovich Glivenko and Francesco Paolo Cantelli, describes the asymptotic behaviour of the empirical distribution function as the number of independent and identically distributed observations grows. Specifically, the empirical distribution function converges uniformly to the true distribution function almost surely.
In mathematics, more specifically measure theory, there are various notions of the convergence of measures. For an intuitive general sense of what is meant by convergence of measures, consider a sequence of measures μn on a space, sharing a common collection of measurable sets. Such a sequence might represent an attempt to construct 'better and better' approximations to a desired measure μ that is difficult to obtain directly. The meaning of 'better and better' is subject to all the usual caveats for taking limits; for any error tolerance ε > 0 we require there be N sufficiently large for n ≥ N to ensure the 'difference' between μn and μ is smaller than ε. Various notions of convergence specify precisely what the word 'difference' should mean in that description; these notions are not equivalent to one another, and vary in strength.
In the mathematical field of dynamical systems, a random dynamical system is a dynamical system in which the equations of motion have an element of randomness to them. Random dynamical systems are characterized by a state space S, a set of maps from S into itself that can be thought of as the set of all possible equations of motion, and a probability distribution Q on the set that represents the random choice of map. Motion in a random dynamical system can be informally thought of as a state evolving according to a succession of maps randomly chosen according to the distribution Q.
In the mathematical theory of probability, a Borel right process, named after Émile Borel, is a particular kind of continuous-time random process.
In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel.
In mathematics, and more specifically in homological algebra, a resolution is an exact sequence of modules, which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions. However, a finite resolution is one where only finitely many of the objects in the sequence are non-zero; it is usually represented by a finite exact sequence in which the leftmost object or the rightmost object is the zero-object.
In mathematics, cohomology with compact support refers to certain cohomology theories, usually with some condition requiring that cocycles should have compact support.
This article is supplemental for “Convergence of random variables” and provides proofs for selected results.
In statistics, local asymptotic normality is a property of a sequence of statistical models, which allows this sequence to be asymptotically approximated by a normal location model, after an appropriate rescaling of the parameter. An important example when the local asymptotic normality holds is in the case of i.i.d sampling from a regular parametric model.