Contraction alkalosis

Last updated

Contraction alkalosis refers to the increase in blood pH that occurs as a result of fluid losses (volume contraction). The change in pH is especially pronounced with acidic fluid losses caused by problems like vomiting.

Contents

Pathophysiology

There are several possible explanations for the process of alkalosis observed after volume contraction.

One popular theory is that alkalosis is simply the loss of solvent volume without a proportional loss in bicarbonate concentration or increase in carbon dioxide concentration. [1] [2] This explanation may be especially appropriate for the very short term after volume loss.

Another suggests that the alkalosis is due to renal compensatory mechanisms used to correct volume loss. Extracellular fluid (ECF) volume contraction is associated with decreased blood volume and decreased renal perfusion pressure. Three compensation mechanisms engage as a result:

  1. renin secretion is increased,
  2. production of angiotensin II is increased, and
  3. secretion of aldosterone is increased.

Increases in angiotensin II cause increased Na+–H+ exchange in the proximal tubule and increased HCO3 (bicarbonate) reabsorption in the proximal tubule due to increased luminal H+. Increased aldosterone secretion stimulates the H-ATPase of alpha-intercalated cells of the collecting duct, which causes 1) increased distal tubule H+ secretion, worsening the metabolic alkalosis, and 2) increased generation of "new" bicarbonate within these same cells, which will be reabsorbed.[ citation needed ]

Additionally, increased aldosterone secretion causes increased collecting duct K+ secretion, in turn causing the hypokalemia seen with contraction alkalosis.[ citation needed ]

Finally, it has been suggested that the term "contraction alkalosis" is actually a misnomer, and that the alkalosis observed during volume contraction is actually attributable entirely to chloride depletion, which leads to a failure of pendrin, a chloride/bicarbonate exchanger in the collecting duct. [3]

Diagnosis

Diagnosis of contraction alkalosis is made by correlating laboratory data with clinical history and examination. Metabolic alkalosis in the presence of decreased effective circulatory volume, loop diuretic use, or other causes of intravascular depletion such as profound diarrhea should raise suspicion for contraction alkalosis as a likely etiology in the absence of other causes.[ citation needed ]

Treatment

Treatment consists of NaCl infusion to correct ECF volume contraction and administration of K+ to replace urinary losses.[ citation needed ]

Related Research Articles

In biology, homeostasis is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and includes many variables, such as body temperature and fluid balance, being kept within certain pre-set limits. Other variables include the pH of extracellular fluid, the concentrations of sodium, potassium and calcium ions, as well as that of the blood sugar level, and these need to be regulated despite changes in the environment, diet, or level of activity. Each of these variables is controlled by one or more regulators or homeostatic mechanisms, which together maintain life.

Azotemia is a medical condition characterized by abnormally high levels of nitrogen-containing compounds in the blood. It is largely related to insufficient or dysfunctional filtering of blood by the kidneys. It can lead to uremia and acute kidney injury if not controlled.

Nephron Microscopic structural and functional unit of the kidney.

The nephron is the minute or microscopic structural and functional unit of the kidney. It is composed of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries called a glomerulus and an encompassing Bowman's capsule. The renal tubule extends from the capsule. The capsule and tubule are connected and are composed of epithelial cells with a lumen. A healthy adult has 1 to 1.5 million nephrons in each kidney. Blood is filtered as it passes through three layers: the endothelial cells of the capillary wall, its basement membrane, and between the foot processes of the podocytes of the lining of the capsule. The tubule has adjacent peritubular capillaries that run between the descending and ascending portions of the tubule. As the fluid from the capsule flows down into the tubule, it is processed by the epithelial cells lining the tubule: water is reabsorbed and substances are exchanged ; first with the interstitial fluid outside the tubules, and then into the plasma in the adjacent peritubular capillaries through the endothelial cells lining that capillary. This process regulates the volume of body fluid as well as levels of many body substances. At the end of the tubule, the remaining fluid—urine—exits: it is composed of water, metabolic waste, and toxins.

Renin–angiotensin system

The renin–angiotensin system (RAS), or renin–angiotensin–aldosterone system (RAAS), is a hormone system that regulates blood pressure and fluid and electrolyte balance, as well as systemic vascular resistance.

Angiotensin

Angiotensin is a peptide hormone that causes vasoconstriction and an increase in blood pressure. It is part of the renin–angiotensin system, which regulates blood pressure. Angiotensin also stimulates the release of aldosterone from the adrenal cortex to promote sodium retention by the kidneys.

Aldosterone Main mineralocorticoid hormone steroid hormone produced by the zona glomerulosa of the adrenal cortex

Aldosterone is the main mineralocorticoid steroid hormone produced by the zona glomerulosa of the adrenal cortex in the adrenal gland. It is essential for sodium conservation in the kidney, salivary glands, sweat glands, and colon. It plays a central role in the homeostatic regulation of blood pressure, plasma sodium (Na+), and potassium (K+) levels. It does so primarily by acting on the mineralocorticoid receptors in the distal tubules and collecting ducts of the nephron. It influences the reabsorption of sodium and excretion of potassium (from and into the tubular fluids, respectively) of the kidney, thereby indirectly influencing water retention or loss, blood pressure and blood volume. When dysregulated, aldosterone is pathogenic and contributes to the development and progression of cardiovascular and kidney disease. Aldosterone has exactly the opposite function of the atrial natriuretic hormone secreted by the heart.

Collecting duct system Kidney system

The collecting duct system of the kidney consists of a series of tubules and ducts that physically connect nephrons to a minor calyx or directly to the renal pelvis. The collecting duct system is the last part of nephron and participates in electrolyte and fluid balance through reabsorption and excretion, processes regulated by the hormones aldosterone and vasopressin.

Renal physiology Study of the physiology of the kidney

Renal physiology is the study of the physiology of the kidney. This encompasses all functions of the kidney, including maintenance of acid-base balance; regulation of fluid balance; regulation of sodium, potassium, and other electrolytes; clearance of toxins; absorption of glucose, amino acids, and other small molecules; regulation of blood pressure; production of various hormones, such as erythropoietin; and activation of vitamin D.

Hypokalemia Human disease caused by insufficient potassium

Hypokalemia is a low level of potassium (K+) in the blood serum. Mild low potassium does not typically cause symptoms. Symptoms may include feeling tired, leg cramps, weakness, and constipation. Low potassium also increases the risk of an abnormal heart rhythm, which is often too slow and can cause cardiac arrest.

Loop diuretic Diuretics that act at the ascending limb of the loop of Henle in the kidney

Loop diuretics are diuretics that act at the ascending limb of the loop of Henle in the kidney. They are primarily used in medicine to treat hypertension and edema often due to congestive heart failure or chronic kidney disease. While thiazide diuretics are more effective in patients with normal kidney function, loop diuretics are more effective in patients with impaired kidney function.

The anion gap is a value calculated from the results of multiple individual medical lab tests. It may be reported with the results of an electrolyte panel, which is often performed as part of a comprehensive metabolic panel.

Metabolic alkalosis Medical condition

Metabolic alkalosis is a metabolic condition in which the pH of tissue is elevated beyond the normal range (7.35–7.45). This is the result of decreased hydrogen ion concentration, leading to increased bicarbonate, or alternatively a direct result of increased bicarbonate concentrations. The condition typically cannot last long if the kidneys are functioning properly.

Hyperchloremic acidosis is a form of metabolic acidosis associated with a normal anion gap, a decrease in plasma bicarbonate concentration, and an increase in plasma chloride concentration. Although plasma anion gap is normal, this condition is often associated with an increased urine anion gap, due to the kidney's inability to secrete ammonia.

Renal tubular acidosis Medical condition

Renal tubular acidosis (RTA) is a medical condition that involves an accumulation of acid in the body due to a failure of the kidneys to appropriately acidify the urine. In renal physiology, when blood is filtered by the kidney, the filtrate passes through the tubules of the nephron, allowing for exchange of salts, acid equivalents, and other solutes before it drains into the bladder as urine. The metabolic acidosis that results from RTA may be caused either by insufficient secretion of hydrogen ions into the latter portions of the nephron or by failure to reabsorb sufficient bicarbonate ions from the filtrate in the early portion of the nephron. Although a metabolic acidosis also occurs in those with chronic kidney disease, the term RTA is reserved for individuals with poor urinary acidification in otherwise well-functioning kidneys. Several different types of RTA exist, which all have different syndromes and different causes. RTA is usually an incidental finding based on routine blood draws that show abnormal results. Clinically, patients may present with vague symptoms such as dehydration, mental status changes, or delayed growth in adolescents.

Bartter syndrome Medical condition

Bartter syndrome (BS) is a rare inherited disease characterised by a defect in the thick ascending limb of the loop of Henle, which results in low potassium levels (hypokalemia), increased blood pH (alkalosis), and normal to low blood pressure. There are two types of Bartter syndrome: neonatal and classic. A closely associated disorder, Gitelman syndrome, is milder than both subtypes of Bartter syndrome.

Acid–base homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF). The proper balance between the acids and bases in the ECF is crucial for the normal physiology of the body—and for cellular metabolism. The pH of the intracellular fluid and the extracellular fluid need to be maintained at a constant level.

Normal anion gap acidosis is an acidosis that is not accompanied by an abnormally increased anion gap.

Acid–base disorder Medical condition

Acid–base imbalance is an abnormality of the human body's normal balance of acids and bases that causes the plasma pH to deviate out of the normal range. In the fetus, the normal range differs based on which umbilical vessel is sampled. It can exist in varying levels of severity, some life-threatening.

Distal renal tubular acidosis Medical condition

Distal renal tubular acidosis (dRTA) is the classical form of RTA, being the first described. Distal RTA is characterized by a failure of acid secretion by the alpha intercalated cells of the cortical collecting duct of the distal nephron. This failure of acid secretion may be due to a number of causes, and it leads to an inability to acidify the urine to a pH of less than 5.3.

Diuretic Substance that promotes the production of urine

A diuretic is any substance that promotes diuresis, the increased production of urine. This includes forced diuresis. A diuretic tablet is sometimes colloquially called a water tablet. There are several categories of diuretics. All diuretics increase the excretion of water from the body, through the kidneys. There exist several classes of diuretic, and each works in a distinct way. Alternatively, an antidiuretic, such as vasopressin, is an agent or drug which reduces the excretion of water in urine.

References

  1. "Acid-Base Tutorial - Metabolic Acidosis and Alkalosis". Acid-base.com. 2004-11-18. Retrieved 2012-02-15.
  2. Garella, Serafino; Chang, Bruce S.; Kahn, Sewell I. (1975). "Dilution acidosis and contraction alkalosis: Review of a concept". Kidney International. 8 (5): 279–283. doi: 10.1038/ki.1975.114 .
  3. Luke, R. G.; Galla, J. H. (2012). "It is Chloride Depletion Alkalosis, Not Contraction Alkalosis". Journal of the American Society of Nephrology. 23 (2): 204–207. doi:10.1681/ASN.2011070720. PMC   3269186 . PMID   22223876.

Further reading