Coordinatograph

Last updated

A coordinatograph is an instrument which mechanically plots X and Y coordinates onto a surface, such as in compiling maps [1] or in plotting control points such as in electronic circuit design.

Cartography The study and practice of making maps

Cartography is the study and practice of making maps. Combining science, aesthetics, and technique, cartography builds on the premise that reality can be modeled in ways that communicate spatial information effectively.

Contents

One historic application of a coordinatograph was a machine that precisely placed and cut rubylith to create photomasks for early integrated circuits including some of the earliest generations of the modern PC microprocessor. [2] The coordinatograph produced layout would then be photographically reduced 100:1 to create the production photomask. [3]

Rubylith photomask film that can be cut with a knife

Rubylith is a brand of masking film, invented and trademarked by the Ulano Corporation. Today the brand has become genericized to the point that it has become synonymous with all coloured masking films.

Photomask opaque plate or film with holes or transparencies that allow light to shine through in a defined pattern

A photomask is an opaque plate with holes or transparencies that allow light to shine through in a defined pattern. They are commonly used in photolithography.

Integrated circuit electronic circuit manufactured by lithography; set of electronic circuits on one small flat piece (or "chip") of semiconductor material, normally silicon 639-1 ısoo

An integrated circuit or monolithic integrated circuit is a set of electronic circuits on one small flat piece of semiconductor material that is normally silicon. The integration of large numbers of tiny transistors into a small chip results in circuits that are orders of magnitude smaller, cheaper, and faster than those constructed of discrete electronic components. The IC's mass production capability, reliability and building-block approach to circuit design has ensured the rapid adoption of standardized ICs in place of designs using discrete transistors. ICs are now used in virtually all electronic equipment and have revolutionized the world of electronics. Computers, mobile phones, and other digital home appliances are now inextricable parts of the structure of modern societies, made possible by the small size and low cost of ICs.

See also

Photolithography, also termed optical lithography or UV lithography, is a process used in microfabrication to pattern parts of a thin film or the bulk of a substrate. It uses light to transfer a geometric pattern from a photomask to a light-sensitive chemical "photoresist", or simply "resist," on the substrate. A series of chemical treatments then either engraves the exposure pattern into the material or enables deposition of a new material in the desired pattern upon the material underneath the photo resist. For example, in complex integrated circuits, a modern CMOS wafer will go through the photolithographic cycle up to 50 times.

Etching (microfabrication) technique in microfabrication

Etching is used in microfabrication to chemically remove layers from the surface of a wafer during manufacturing. Etching is a critically important process module, and every wafer undergoes many etching steps before it is complete.

Design for manufacturability

Design for manufacturability is the general engineering practice of designing products in such a way that they are easy to manufacture. The concept exists in almost all engineering disciplines, but the implementation differs widely depending on the manufacturing technology. DFM describes the process of designing or engineering a product in order to facilitate the manufacturing process in order to reduce its manufacturing costs. DFM will allow potential problems to be fixed in the design phase which is the least expensive place to address them. Other factors may affect the manufacturability such as the type of raw material, the form of the raw material, dimensional tolerances, and secondary processing such as finishing.

Related Research Articles

Microprocessor computer processor contained on an integrated-circuit chip

A microprocessor is a computer processor that incorporates the functions of a central processing unit on a single integrated circuit (IC), or at most a few integrated circuits. The microprocessor is a multipurpose, clock driven, register based, digital integrated circuit that accepts binary data as input, processes it according to instructions stored in its memory, and provides results as output. Microprocessors contain both combinational logic and sequential digital logic. Microprocessors operate on numbers and symbols represented in the binary number system.

Semiconductor device fabrication process used to create the integrated circuits that are present in everyday electrical and electronic devices

Semiconductor device fabrication is the process used to create the integrated circuits that are present in everyday electrical and electronic devices. It is a multiple-step sequence of photolithographic and chemical processing steps during which electronic circuits are gradually created on a wafer made of pure semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications.

In electronics design, tape-out or tapeout is the final result of the design process for integrated circuits or printed circuit boards before they are sent for manufacturing. The tapeout is specifically the point at which the graphic for the photomask of the circuit is sent to the fabrication facility. A synonym used at IBM is RIT. IBM differentiates between RIT-A for the non-metallic structures and RIT-B for the metal layers.

Very Large Scale Integration process of creating an integrated circuit by combining thousands of transistors into a single chip. VLSI began in the 1970s when complex semiconductor and communication technologies were being developed

Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining hundreds of thousands of transistors or devices into a single chip. VLSI began in the 1970s when complex semiconductor and communication technologies were being developed. The microprocessor is a VLSI device. Before the introduction of VLSI technology most ICs had a limited set of functions they could perform. An electronic circuit might consist of a CPU, ROM, RAM and other glue logic. VLSI lets IC designers add all of these into one chip.

Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), is a category of software tools for designing electronic systems such as integrated circuits and printed circuit boards. The tools work together in a design flow that chip designers use to design and analyze entire semiconductor chips. Since a modern semiconductor chip can have billions of components, EDA tools are essential for their design.

The history of computing hardware starting at 1960 is marked by the conversion from vacuum tube to solid-state devices such as the transistor and later the integrated circuit. By 1959 discrete transistors were considered sufficiently reliable and economical that they made further vacuum tube computers uncompetitive. Computer main memory slowly moved away from magnetic core memory devices to solid-state static and dynamic semiconductor memory, which greatly reduced the cost, size and power consumption of computers.

Wafer fabrication is a procedure composed of many repeated sequential processes to produce complete electrical or photonic circuits. Examples include production of radio frequency (RF) amplifiers, LEDs, optical computer components, and CPUs for computers. Wafer fabrication is used to build components with the necessary electrical structures.

In semiconductor fabrication, a resist is a thin layer used to transfer a circuit pattern to the semiconductor substrate which it is deposited upon. A resist can be patterned via lithography to form a (sub)micrometer-scale, temporary mask that protects selected areas of the underlying substrate during subsequent processing steps. The material used to prepare said thin layer is typically a viscous solution. Resists are generally proprietary mixtures of a polymer or its precursor and other small molecules that have been specially formulated for a given lithography technology. Resists used during photolithography are called photoresists.

Multi-chip module

A multi-chip module (MCM) is generically an electronic assembly where multiple integrated circuits, semiconductor dies and/or other discrete components are integrated, usually onto a unifying substrate, so that in use it is treated as if it were a single component . Other terms, such as "hybrid" or "hybrid integrated circuit", also refer to MCMs.

Integrated circuit design Engineering process for electronic hardware

Integrated circuit design, or IC design, is a subset of electronics engineering, encompassing the particular logic and circuit design techniques required to design integrated circuits, or ICs. ICs consist of miniaturized electronic components built into an electrical network on a monolithic semiconductor substrate by photolithography.

In VLSI semiconductor manufacturing, the process of Design Closure is a part of the development workflow by which an integrated circuit design is modified from its initial description to meet a growing list of design constraints and objectives.

Die (integrated circuit) an unpackaged integrated circuit

A die, in the context of integrated circuits, is a small block of semiconducting material on which a given functional circuit is fabricated. Typically, integrated circuits are produced in large batches on a single wafer of electronic-grade silicon (EGS) or other semiconductor through processes such as photolithography. The wafer is cut (diced) into many pieces, each containing one copy of the circuit. Each of these pieces is called a die.

The 14 nanometer technology node is the successor to the 22 nm/(20 nm) node. The 14 nm was so named by the International Technology Roadmap for Semiconductors (ITRS). One nanometer (nm) is one billionth of a meter. Until about 2011, the node following 22 nm was expected to be 16 nm. The first 14 nm scale devices were shipped to consumers by Intel in 2014.

In microelectronics, a three-dimensional integrated circuit is an integrated circuit manufactured by stacking silicon wafers or dies and interconnecting them vertically using, for instance, through-silicon vias (TSVs) or Cu-Cu connections, so that they behave as a single device to achieve performance improvements at reduced power and smaller footprint than conventional two dimensional processes. 3D IC is just one of a host of 3D integration schemes that exploit the z-direction to achieve electrical performance benefits.

In integrated circuits, the stepping level or revision level is a version number that refers to the introduction or revision of one or more photolithographic photomasks within the set of photomasks that is used to pattern an integrated circuit. The term originated from the name of the equipment ("steppers") that exposes the photoresist to light. Integrated circuits have two primary classes of mask sets: 1. base layers that are used to build the structures that make up the logic such as transistors, and 2: metal layers that connect the logic together.

Power management integrated circuit An integrated circuit designed for power management in electronic devices

Power management integrated circuits are integrated circuits for power management. Although PMIC refers to a wide range of chips, most include several DC/DC converters or their control part. A PMIC is often included in battery-operated devices such as mobile phones and portable media players to decrease the amount of space required.

References

  1. Maling, D. H. (2013). Measurements from Maps: Principles and Methods of Cartometry. Elsevier. pp. 160–161. ISBN   978-0-08-030290-4 . Retrieved 7 January 2015.
  2. Volk, Andrew; Stoll, Peter; Metrovich, Paul (2001). Chao, Lin, ed. "Recollections of Early Chip Development at Intel" (PDF). Intel Technology Journal (Q1, 2001): 10–11. Retrieved 7 January 2015. The first chips at Intel used a machine called a “Coordinatograph” to guide cutting of the [rubylith].
  3. Bergman, Dieter (2007). Martel, Michael L., ed. From Vacuum Tubes to Nanotubes: An Amazing Half Century: The Emergence of Electronic Circuit Technology 1957-2007 (PDF). IPC. p. 113. Archived from the original (PDF) on 2015-01-07. (Semiconductor die patterns were usually produced at 100:1 using a scribe-coat coordinatograph where the coating was peeled away to leave the represented IC Pattern).
Intel 4004 4-bit central processing unit

The Intel 4004 is a 4-bit central processing unit (CPU) released by Intel Corporation in 1971. It was the first commercially available microprocessor by Intel, and the first in a long line of Intel CPUs.