Court jester hypothesis

Last updated

The court jester hypothesis is used in reference to the idea that abiotic forces (including climate), rather than biotic competition between species, function as a major driving force behind the processes in evolution which produce speciation. In evolutionary theory, the court-jester hypothesis contrasts the Red Queen hypothesis.

Contents

The term "Court Jester hypothesis" was coined by Anthony Barnosky in 1999 in allusion to the Red Queen hypothesis. [1] In a 2001 paper on the subject, [2] Barnosky uses the term without citation, suggesting that he is the one who coined it. Westfall and Millar attribute the term to him (citing the 2001 paper) in a paper of their own from 2004. [3] Michael Benton also credits Barnosky with coining the phrase. [4]

Since 2001, many researchers in evolution (such as Tracy Aze, [5] Anthony Barnosky, Michael J. Benton, [4] Douglas Erwin, [6] Thomas Ezard, [5] Sergey Gravilets, [7] J.B.C. Jackson, [6] Paul N. Pearson, [5] Andy Purvis, [5] Robert D. Westfall, [3] and Constance I. Millar [3] ) have started to use the term "Court Jester hypothesis" to describe the view that evolution at a macro scale is driven by abiotic factors more than the biotic competition called the Red Queen hypothesis.

Content of hypothesis

The court jester hypothesis builds upon the punctuated equilibrium theory of Stephen Gould (1972) [8] by providing a primary mechanism for it. [2] The 2001 paper by Barnosky that is one of the first to use the term appropriate for the Court Jester side of the debate: the Stability hypothesis of Stenseth and Maynard Smith (1984), Vrba's Habitat Theory (1992), Vrba's Turn-over pulse hypothesis (1985), Vrba's Traffic light hypothesis and Relay Model (1995), Gould's Tiers of Time (1985), Brett and Baird's Coordinated Stasis (1995), and Graham and Lundelius' Coevolutionary Disequilibrium (1984) theories. [9]

Barnosky's 2001 paper that was one of the first to introduce the term, [2] explains what the Court Jester hypothesis means, describing it as one side of a debate over:

"[W]hether this march of morphology and species compositions through time, so well documented not only for mammals but throughout the fossil record, is more strongly influenced by interactions among species (Red Queen hypotheses), or by random perturbations to the physical environment such as climate change, tectonic events, or even bolide impacts that change the ground rules for the biota (Court Jester hypotheses). . . . A class of alternative ideas, here termed Court Jester hypotheses, share the basic tenet that changes in the physical environment rather than biotic interactions themselves are the initiators of major changes in organisms and ecosystems. . . . Court Jester hypotheses imply that events random in respect to the biota occasionally change the rules on the biotic playing field. Accelerated biotic response (relative to background rates) is the result."

The Red Queen hypothesis (focusing on evolution by biotic interactions) and Court Jester hypothesis (focusing on evolution by abiotic factors such as stochastic environmental perturbations) both influence coevolutionary switching in host-parasite interaction. [10] Barnosky acknowledges in the 2001 paper [2] that the Court Jester hypothesis is not necessarily inconsistent with the Red Queen hypothesis:

"Indeed, as Ned Johnson remarked (after listening to a lecture expressing these ideas), ‘‘Maybe it is time for the Court Jester to marry the Red Queen.’’ That is, perhaps the dichotomy between the two hypotheses is really a dichotomy of scale, and that as we look for ways to travel across biological levels, we will find ways to resolve the dichotomies."

The Red Queen Hypothesis

The Red Queen Hypothesis is a term coined by Leigh Van Valen, in 1973, [4] in a reference to the Lewis Carroll book Through the Looking Glass . It refers in evolution theory to the arms race of evolutionary developments and counter-developments that cause co-evolving species to mutually drive each other to adapt. There is dispute over how strongly evolution at the scale of speciation is driven by these competitions between species, and how much it is driven instead by abiotic factors like meteor strikes and climate change, but there was not an artful metaphor to capture this alternative until one was coined by Anthony Barnosky.

Related Research Articles

<span class="mw-page-title-main">Ecology</span> Study of organisms and their environment

Ecology is the study of the relationships between living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history. Ecology is a branch of biology, and it is not synonymous with environmentalism.

<span class="mw-page-title-main">Ecological niche</span> Fit of a species living under specific environmental conditions

In ecology, a niche is the match of a species to a specific environmental condition. It describes how an organism or population responds to the distribution of resources and competitors and how it in turn alters those same factors. "The type and number of variables comprising the dimensions of an environmental niche vary from one species to another [and] the relative importance of particular environmental variables for a species may vary according to the geographic and biotic contexts".

<span class="mw-page-title-main">Biogeography</span> Study of the distribution of species and ecosystems in geographic space and through geological time

Biogeography is the study of the distribution of species and ecosystems in geographic space and through geological time. Organisms and biological communities often vary in a regular fashion along geographic gradients of latitude, elevation, isolation and habitat area. Phytogeography is the branch of biogeography that studies the distribution of plants. Zoogeography is the branch that studies distribution of animals. Mycogeography is the branch that studies distribution of fungi, such as mushrooms.

<span class="mw-page-title-main">Coevolution</span> Two or more species influencing each others evolution

In biology, coevolution occurs when two or more species reciprocally affect each other's evolution through the process of natural selection. The term sometimes is used for two traits in the same species affecting each other's evolution, as well as gene-culture coevolution.

<span class="mw-page-title-main">Evolution of sexual reproduction</span> How sexually reproducing multicellular organisms could have evolved from a common ancestor species

Sexual reproduction is an adaptive feature which is common to almost all multicellular organisms and various unicellular organisms, with some organisms being incapable of asexual reproduction. Currently the adaptive advantage of sexual reproduction is widely regarded as a major unsolved problem in biology. As discussed below, one prominent theory is that sex evolved as an efficient mechanism for producing variation, and this had the advantage of enabling organisms to adapt to changing environments. Another prominent theory, also discussed below, is that a primary advantage of outcrossing sex is the masking of the expression of deleterious mutations. Additional theories concerning the adaptive advantage of sex are also discussed below. Sex does, however, come with a cost. In reproducing asexually, no time nor energy needs to be expended in choosing a mate. And if the environment has not changed, then there may be little reason for variation, as the organism may already be well adapted. Sex also halves the amount of offspring a given population is able to produce. Sex, however, has evolved as the most prolific means of species branching into the tree of life. Diversification into the phylogenetic tree happens much more rapidly via sexual reproduction than it does by way of asexual reproduction.

Evolutionary game theory (EGT) is the application of game theory to evolving populations in biology. It defines a framework of contests, strategies, and analytics into which Darwinian competition can be modelled. It originated in 1973 with John Maynard Smith and George R. Price's formalisation of contests, analysed as strategies, and the mathematical criteria that can be used to predict the results of competing strategies.

<span class="mw-page-title-main">Leigh Van Valen</span> American biologist

Leigh Van Valen was a U.S. evolutionary biologist. At the time of his death, he was professor emeritus in the Department of Ecology and Evolution at the University of Chicago.

<span class="mw-page-title-main">Latitudinal gradients in species diversity</span> Global increase in species richness from polar regions to tropics

Species richness, or biodiversity, increases from the poles to the tropics for a wide variety of terrestrial and marine organisms, often referred to as the latitudinal diversity gradient. The latitudinal diversity gradient is one of the most widely recognized patterns in ecology. It has been observed to varying degrees in Earth's past. A parallel trend has been found with elevation, though this is less well-studied.

The turnover-pulse hypothesis, formulated by paleontologist Elisabeth Vrba, suggests that major changes to the climate or ecosystem often result in a period of rapid extinction and high turnover of new species across multiple different lineages. Changes may include climate change, tectonic plate shifting, and catastrophes, among other things. It can be seen as an extension of the concept of evolutionary radiation from a single to a multi-clade context.

<span class="mw-page-title-main">Elisabeth Vrba</span> American paleontologist

Elisabeth S. Vrba is a paleontologist at Yale University who developed the turnover-pulse hypothesis.

The following outline is provided as an overview of and topical guide to ecology:

In philosophy of science, strong inference is a model of scientific inquiry that emphasizes the need for alternative hypotheses, rather than a single hypothesis to avoid confirmation bias.

<span class="mw-page-title-main">Red Queen hypothesis</span> Concept in evolutionary biology

The Red Queen hypothesis is a hypothesis in evolutionary biology proposed in 1973, that species must constantly adapt, evolve, and proliferate in order to survive while pitted against ever-evolving opposing species. The hypothesis was intended to explain the constant (age-independent) extinction probability as observed in the paleontological record caused by co-evolution between competing species; however, it has also been suggested that the Red Queen hypothesis explains the advantage of sexual reproduction at the level of individuals, and the positive correlation between speciation and extinction rates in most higher taxa.

<span class="mw-page-title-main">Multiple sexual ornaments</span>

Many species have multiple sexual ornaments, whereby females select mating partners using several cues instead of only one cue. Whereas this phenomenon is self-evident and hence long recognized, adaptive explanations of why females use several instead of only one signal have been formulated relatively recently. Several hypotheses exist, but mutually exclusive tests are still lacking.

<span class="mw-page-title-main">Host–parasite coevolution</span> Mutually adaptive genetic change of a host and a parasite

Host–parasite coevolution is a special case of coevolution, where a host and a parasite continually adapt to each other. This can create an evolutionary arms race between them. A more benign possibility is of an evolutionary trade-off between transmission and virulence in the parasite, as if it kills its host too quickly, the parasite will not be able to reproduce either. Another theory, the Red Queen hypothesis, proposes that since both host and parasite have to keep on evolving to keep up with each other, and since sexual reproduction continually creates new combinations of genes, parasitism favours sexual reproduction in the host.

<span class="mw-page-title-main">Ecological fitting</span> Biological process

Ecological fitting is "the process whereby organisms colonize and persist in novel environments, use novel resources or form novel associations with other species as a result of the suites of traits that they carry at the time they encounter the novel condition". It can be understood as a situation in which a species' interactions with its biotic and abiotic environment seem to indicate a history of coevolution, when in actuality the relevant traits evolved in response to a different set of biotic and abiotic conditions.

<span class="mw-page-title-main">Escape and radiate coevolution</span>

Escape and radiate coevolution is a hypothesis proposing that a coevolutionary 'arms-race' between primary producers and their consumers contributes to the diversification of species by accelerating speciation rates. The hypothesized process involves the evolution of novel defenses in the host, allowing it to "escape" and then "radiate" into differing species.

<span class="mw-page-title-main">Fluctuating selection</span>

Fluctuating selection is a mode of natural selection characterized by the fluctuation of the direction of selection on a given phenotype over a relatively brief period of evolutionary time. For example, a species of plant may come in two varieties: one which prefers wetter soil and one which prefers dryer soil. During a period of wet years, the wet variety will be more fit and produce more offspring, and thereby increase the frequency of wet-preferring plants. If this wet period is followed by drought, the dry variety will be selected for and its numbers will increase. As periods of dryness and wetness fluctuate, so too does selection on dry-preferring and wet-preferring plants. Fluctuating selection is also manifest at the genic level. Consider two alleles, A and B, which are found at the same locus. Fluctuating selection dynamics are at play when selection favors A at time t0, B at t1 and A again at t2.

<span class="mw-page-title-main">Sloshing bucket model of evolution</span> Theory in evolutionary biology

The sloshing bucket model of evolution is a theory in evolutionary biology that describes how environmental disturbances varying in magnitude will affect the species present. The theory emphasizes the causal relationship between environmental factors that impinge and affect genealogical systems, providing an overarching view that determines the relationship between the variety of biological systems.

The Red King hypothesis is the opposite idea to the Red Queen hypothesis, where mutualistic and symbiotic interactions favor the fitness of a set of individuals through slow evolution, as opposed to having competitive interactions or having an "arms race". It has been described that individuals from different communities can establish positive interactions for long periods of time when there is a great benefit for both parties, also through mutual help, individuals from different species (communities) can share different tasks to build a niche, which avoid spending energy in competing and increasing their resilience over environmental stress.

References

  1. Anthony Barnosky, "Does evolution dance to the Red Queen or the Court Jester?", 3 Annual Meeting of the Society of Vertebrate Paleontology USA (1999). https://www.tandfonline.com/toc/ujvp20/19/sup003?nav=tocList
  2. 1 2 3 4 Anthony Barnosky, "Distinguishing The Effects Of The Red Queen And Court Jester On Miocene Mammal Evolution In The Northern Rocky Mountains" Journal of Vertebrate Paleontology 21(1):172–185, March 2001 http://www.ucmp.berkeley.edu/miomap/RESULTS-MIOMAP/barnoskyjvp2001.pdf
  3. 1 2 3 Robert D. Westfall and Constance I. Millar, "Genetic consequences of forest population dynamics influenced by historic climatic variability in the western USA" Forest Ecology and Management 197 (2004) 159–170. http://www.fs.fed.us/psw/publications/westfall/Westfall%20&%20Millar%2004.pdf
  4. 1 2 3 Michael J. Benton, "The Red Queen and the Court Jester: Species Diversity and the Role of Biotic and Abiotic Factors Through Time", Science February 6, 2009: Vol. 323 no. 5915 pp. 728–732 doi : 10.1126/science.1157719
  5. 1 2 3 4 Thomas H. G. Ezard, Tracy Aze, Paul N. Pearson, and Andy Purvis, "Interplay Between Changing Climate and Species’ Ecology Drives Macroevolutionary Dynamics", Science April 15, 2011: Vol. 332 no. 6027 pp. 349–351 doi : 10.1126/science.1203060
  6. 1 2 Jeremy B.C. Jackson and Douglas H. Erwin, "What can we learn about ecology and evolution from the fossil record?" Trends in Ecology and Evolution)
  7. Sergey Gavrilets, et al., "Adaptive Radiation: Contrasting Theory with Data",Science February 6, 2009: 732–737. doi : 10.1126/science.1157966
  8. Eldredge, Niles; Gould, S. J. (1972). "Punctuated equilibria: an alternative to phyletic gradualism". In Schopf, T. J. M. (ed.). Models in Paleobiology. San Francisco: Freeman Cooper. pp. 82–115. ISBN   0-87735-325-5. Reprinted in Eldredge, N. (1985). Time frames. Princeton: Princeton Univ. Press. ISBN   0-691-02435-9.
  9. Barnosky, Anthony (2001). "Distinguishing The Effects Of The Red Queen And Court Jester On Miocene Mammal Evolution In The Northern Rocky Mountains". Journal of Vertebrate Paleontology. 21 (1): 172–185 [at Table 1]. doi:10.1671/0272-4634(2001)021[0172:DTEOTR]2.0.CO;2. S2CID   12356079.
  10. Rabajante, J; et al. (2016). "Host-parasite Red Queen dynamics with phase-locked rare genotypes". Science Advances . 2 (3): e1501548. Bibcode:2016SciA....2E1548R. doi:10.1126/sciadv.1501548. ISSN   2375-2548. PMC   4783124 . PMID   26973878.