Coverage map

Last updated

Coverage maps are designed to indicate the service areas of radiocommunication transmitting stations. Typically these may be produced for radio or television stations, for mobile telephone networks and for satellite networks. For satellite networks, a coverage map is often known as a footprint.

Contents

Definition of coverage

Typically a coverage map will indicate the area within which the user can expect to obtain good reception of the service in question using standard equipment under normal operating conditions. Additionally, the map may also separately denote supplementary service areas where good reception may be obtained but other stations may be stronger, or where the reception may be variable but the service may still be usable.

Example radio coverage map Example radio coverage map.png
Example radio coverage map

Technical details

The field strength that the marked service boundary on a coverage map represents will be defined by whoever produces the map, but typical examples are as follows:

VHF(FM) / Band II

For VHF(FM) / Band II, the BBC defines the service area boundary for stereo services as corresponding to an average field strength of 54 dB (relative to 1 μV/m) at a height of 10 m above ground level. For mono it is 48 dB (relative to 1 μV/m).

The receiving antenna height of 10m dates from the 1950s when receivers were relatively insensitive and used rooftop antennas. Although this may seem unrealistic for typical situations today, when combined with the above threshold it is considered a good proxy for providing coverage to more sensitive modern receivers used without external rooftop antennas.

MF / Mediumwave

For MF / Mediumwave, the BBC defines the daytime service area boundary as a minimum field strength of 2 mV/m. At night, the service area of mediumwave services can be drastically reduced by co-channel interference from distant stations.

Limitations

Often coverage maps show general coverage for large regions and therefore any boundary indicated should not be interpreted as a rigid limit. The biggest cause of uncertainty for a coverage map is the quality (mainly sensitivity) of receiving apparatus used. A coverage map may be produced to indicate the area in which a certain signal strength is delivered. [1] Even if it is 100% accurate (which it never is), a major factor on whether a signal is receivable depends very much on whether the receiving apparatus is sensitive enough to use a signal of that level. Commercial receivers can vary widely in their sensitivity, thus perception of coverage can vary widely.

The quality of reception can be very different at places only short distances apart, and this phenomenon is more apparent as the transmission frequency increases. Inevitably small pockets of poor reception may exist within the main service area that cannot be shown on the map due to scale issues. Conversely, the use of sensitive equipment, high gain antennas, or simply being located on high ground can yield good signal strengths well outside the indicated area. The significance of local geographical conditions cannot be over emphasised and this was underlined by an experiment which revealed the signal reception conditions around a typical house. The site did not have the critical "line-of-sight propagation" to the transmitter. Average signal levels, taken at the same height, varied by up to 6 dB, and for individual frequencies by up to 14 dB. In RF reception terms these figures are huge differences.

Although carriers and broadcasters attempt to design their networks to eliminate dead zones, no network is perfect, so coverage breaks within the general coverage areas are still possible.

There are limitations inherent to the way in which data collection for coverage maps is carried out. Traditional coverage maps are based on models, constructed from readings taken by dedicated network testers. This often means that coverage maps show the theoretical capacity of the network rather than its real-world performance. In recent years companies such as OpenSignal and Sensorly have emerged that provide coverage maps based on information crowdsourced from consumer applications. The advantage of this approach is that the coverage maps show network reach and performance as it is experienced by its users.

Often companies will construct low power satellite stations to fill in bad reception areas that become apparent once the high power transmitter's coverage map has identified where the network is deficient.

Related Research Articles

<span class="mw-page-title-main">Line-of-sight propagation</span> Characteristic of electromagnetic radiation

Line-of-sight propagation is a characteristic of electromagnetic radiation or acoustic wave propagation which means waves can only travel in a direct visual path from the source to the receiver without obstacles. Electromagnetic transmission includes light emissions traveling in a straight line. The rays or waves may be diffracted, refracted, reflected, or absorbed by the atmosphere and obstructions with material and generally cannot travel over the horizon or behind obstacles.

Television receive-only (TVRO) is a term used chiefly in North America, South America to refer to the reception of satellite television from FSS-type satellites, generally on C-band analog; free-to-air and unconnected to a commercial DBS provider. TVRO was the main means of consumer satellite reception in the United States and Canada until the mid-1990s with the arrival of direct-broadcast satellite television services such as PrimeStar, USSB, Bell Satellite TV, DirecTV, Dish Network, Sky TV that transmit Ku signals. While these services are at least theoretically based on open standards, the majority of services are encrypted and require proprietary decoder hardware. TVRO systems relied on feeds being transmitted unencrypted and using open standards, which heavily contrasts to DBS systems in the region.

<span class="mw-page-title-main">Medium wave</span> Radio transmission using wavelengths 200-1000 m

Medium wave (MW) is a part of the medium frequency (MF) radio band used mainly for AM radio broadcasting. The spectrum provides about 120 channels with more limited sound quality than FM stations on the FM broadcast band. During the daytime, reception is usually limited to more local stations, though this is dependent on the signal conditions and quality of radio receiver used. Improved signal propagation at night allows the reception of much longer distance signals. This can cause increased interference because on most channels multiple transmitters operate simultaneously worldwide. In addition, amplitude modulation (AM) is often more prone to interference by various electronic devices, especially power supplies and computers. Strong transmitters cover larger areas than on the FM broadcast band but require more energy and longer antennas. Digital modes are possible but have not reached momentum yet.

<span class="mw-page-title-main">Radio clock</span> Type of clock which self-synchronizes its time using dedicated radio transmitters

A radio clock or radio-controlled clock (RCC), and often colloquially referred to as an "atomic clock", is a type of quartz clock or watch that is automatically synchronized to a time code transmitted by a radio transmitter connected to a time standard such as an atomic clock. Such a clock may be synchronized to the time sent by a single transmitter, such as many national or regional time transmitters, or may use the multiple transmitters used by satellite navigation systems such as Global Positioning System. Such systems may be used to automatically set clocks or for any purpose where accurate time is needed. Radio clocks may include any feature available for a clock, such as alarm function, display of ambient temperature and humidity, broadcast radio reception, etc.

A satellite dish is a dish-shaped type of parabolic antenna designed to receive or transmit information by radio waves to or from a communication satellite. The term most commonly means a dish which receives direct-broadcast satellite television from a direct broadcast satellite in geostationary orbit.

A broadcast range is the service area that a broadcast station or other transmission covers via radio waves. It is generally the area in which a station's signal strength is sufficient for most receivers to decode it. However, this also depends on interference from other stations.

<span class="mw-page-title-main">TV and FM DX</span> Long-distance reception of signals on the VHF frequency band

TV DX and FM DX is the active search for distant radio or television stations received during unusual atmospheric conditions. The term DX is an old telegraphic term meaning "long distance."

Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for amateur radio communications, international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems.

<span class="mw-page-title-main">Cell site</span> Communications equipment location

A cell site, cell phone tower, cell base tower, or cellular base station is a cellular-enabled mobile device site where antennas and electronic communications equipment are placed to create a cell, or adjacent cells, in a cellular network. The raised structure typically supports antenna and one or more sets of transmitter/receivers transceivers, digital signal processors, control electronics, a GPS receiver for timing, primary and backup electrical power sources, and sheltering.

In telecommunications, particularly in radio frequency engineering, signal strength refers to the transmitter power output as received by a reference antenna at a distance from the transmitting antenna. High-powered transmissions, such as those used in broadcasting, are expressed in dB-millivolts per metre (dBmV/m). For very low-power systems, such as mobile phones, signal strength is usually expressed in dB-microvolts per metre (dBμV/m) or in decibels above a reference level of one milliwatt (dBm). In broadcasting terminology, 1 mV/m is 1000 μV/m or 60 dBμ.

The 2-meter amateur radio band is a portion of the VHF radio spectrum that comprises frequencies stretching from 144 MHz to 148 MHz in International Telecommunication Union region (ITU) Regions 2 and 3 and from 144 MHz to 146 MHz in ITU Region 1 . The license privileges of amateur radio operators include the use of frequencies within this band for telecommunication, usually conducted locally with a line-of-sight range of about 100 miles (160 km).

Non-line-of-sight (NLOS) radio propagation occurs outside of the typical line-of-sight (LOS) between the transmitter and receiver, such as in ground reflections. Near-line-of-sight conditions refer to partial obstruction by a physical object present in the innermost Fresnel zone.

<span class="mw-page-title-main">Television antenna</span> Antenna used with a television to receive television programs

A television antenna, also called a television aerial, is an antenna specifically designed for use with a television receiver (TV) to receive terrestrial over-the-air (OTA) broadcast television signals from a television station. Terrestrial television is broadcast on frequencies from about 47 to 250 MHz in the very high frequency (VHF) band, and 470 to 960 MHz in the ultra high frequency (UHF) band in different countries.

Near vertical incidence skywave, or NVIS, is a skywave radio-wave propagation path that provides usable signals in the medium distances range — usually 0–650 km. It is used for military and paramilitary communications, broadcasting, especially in the tropics, and by radio amateurs for nearby contacts circumventing line-of-sight barriers. The radio waves travel near-vertically upwards into the ionosphere, where they are refracted back down and can be received within a circular region up to 650 km from the transmitter. If the frequency is too high, refraction is insufficient to return the signal to earth and if it is too low, absorption in the ionospheric D layer may reduce the signal strength.

MW DX, short for mediumwave DXing, is the hobby of receiving distant mediumwave radio stations. MW DX is similar to TV and FM DX in that broadcast band (BCB) stations are the reception targets. However, the nature of the lower frequencies used by mediumwave radio stations is very much different from that of the VHF and UHF bands used by FM and TV broadcast stations, and therefore involves different receiving equipment, radio propagation, and reception techniques.

<span class="mw-page-title-main">Amateur radio repeater</span> Combined receiver and transmitter

An amateur radio repeater is an electronic device that receives a weak or low-level amateur radio signal and retransmits it at a higher level or higher power, so that the signal can cover longer distances without degradation. Many repeaters are located on hilltops or on tall buildings as the higher location increases their coverage area, sometimes referred to as the radio horizon, or "footprint". Amateur radio repeaters are similar in concept to those used by public safety entities, businesses, government, military, and more. Amateur radio repeaters may even use commercially packaged repeater systems that have been adjusted to operate within amateur radio frequency bands, but more often amateur repeaters are assembled from receivers, transmitters, controllers, power supplies, antennas, and other components, from various sources.

<span class="mw-page-title-main">Satellite television</span> Broadcasting of television using artificial satellites

Satellite television is a service that delivers television programming to viewers by relaying it from a communications satellite orbiting the Earth directly to the viewer's location. The signals are received via an outdoor parabolic antenna commonly referred to as a satellite dish and a low-noise block downconverter.

In telecommunications, the coverage of a radio station is the geographic area where the station can communicate. Broadcasters and telecommunications companies frequently produce coverage maps to indicate to users the station's intended service area. Coverage depends on several factors, such as orography and buildings, technology, radio frequency and perhaps most importantly for two-way telecommunications the sensitivity and transmit efficiency of the consumer equipment. Some frequencies provide better regional coverage, while other frequencies penetrate better through obstacles, such as buildings in cities.

<span class="mw-page-title-main">Mobile phone signal</span> Signal strength received by a phone from a network

A mobile phone signal is the signal strength received by a mobile phone from a cellular network. Depending on various factors, such as proximity to a tower, any obstructions such as buildings or trees, etc. this signal strength will vary. Most mobile devices use a set of bars of increasing height to display the approximate strength of this received signal to the mobile phone user. Traditionally five bars are used.

<span class="mw-page-title-main">Radio</span> Use of radio waves to carry information

Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates oscillating electrical energy, often characterized as a wave. They can be received by other antennas connected to a radio receiver; this is the fundamental principle of radio communication. In addition to communication, radio is used for radar, radio navigation, remote control, remote sensing, and other applications.

References

  1. "Top 10 Cell Phone Coverage Map Comparison In 2022". 2021-11-22. Retrieved 2022-01-15.