A crack growth equation is used for calculating the size of a fatigue crack growing from cyclic loads. The growth of a fatigue crack can result in catastrophic failure, particularly in the case of aircraft. When many growing fatigue cracks interact with one another it is known as widespread fatigue damage. A crack growth equation can be used to ensure safety, both in the design phase and during operation, by predicting the size of cracks. In critical structure, loads can be recorded and used to predict the size of cracks to ensure maintenance or retirement occurs prior to any of the cracks failing. Safety factors are used to reduce the predicted fatigue life to a service fatigue life because of the sensitivity of the fatigue life to the size and shape of crack initiating defects and the variability between assumed loading and actual loading experienced by a component.
Fatigue life can be divided into an initiation period and a crack growth period. [1] Crack growth equations are used to predict the crack size starting from a given initial flaw and are typically based on experimental data obtained from constant amplitude fatigue tests.
One of the earliest crack growth equations based on the stress intensity factor range of a load cycle () is the Paris–Erdogan equation [2]
where is the crack length and is the fatigue crack growth for a single load cycle . A variety of crack growth equations similar to the Paris–Erdogan equation have been developed to include factors that affect the crack growth rate such as stress ratio, overloads and load history effects.
The stress intensity range can be calculated from the maximum and minimum stress intensity for a cycle
A geometry factor is used to relate the far field stress to the crack tip stress intensity using
There are standard references containing the geometry factors for many different configurations. [3] [4] [5]
Many crack propagation equations have been proposed over the years to improve prediction accuracy and incorporate a variety of effects. The works of Head, [6] Frost and Dugdale, [7] McEvily and Illg, [8] and Liu [9] on fatigue crack-growth behaviour laid the foundation in this topic. The general form of these crack propagation equations may be expressed as
where, the crack length is denoted by , the number of cycles of load applied is given by , the stress range by , and the material parameters by . For symmetrical configurations, the length of the crack from the line of symmetry is defined as and is half of the total crack length .
Crack growth equations of the form are not a true differential equation as they do not model the process of crack growth in a continuous manner throughout the loading cycle. As such, separate cycle counting or identification algorithms such as the commonly used rainflow-counting algorithm, are required to identify the maximum and minimum values in a cycle. Although developed for the stress/strain-life methods rainflow counting has also been shown to work for crack growth. [10] There have been a small number of true derivative fatigue crack growth equations that have also been developed. [11] [12]
Figure 1 shows a typical plot of the rate of crack growth as a function of the alternating stress intensity or crack tip driving force plotted on log scales. The crack growth rate behaviour with respect to the alternating stress intensity can be explained in different regimes (see, figure 1) as follows
Regime A: At low growth rates, variations in microstructure, mean stress (or load ratio), and environment have significant effects on the crack propagation rates. It is observed at low load ratios that the growth rate is most sensitive to microstructure and in low strength materials it is most sensitive to load ratio. [13]
Regime B: At mid-range of growth rates, variations in microstructure, mean stress (or load ratio), thickness, and environment have no significant effects on the crack propagation rates.
Regime C: At high growth rates, crack propagation is highly sensitive to the variations in microstructure, mean stress (or load ratio), and thickness. Environmental effects have relatively very less influence.
Cycles with higher stress ratio have an increased rate of crack growth. [14] This effect is often explained using the crack closure concept which describes the observation that the crack faces can remain in contact with each other at loads above zero. This reduces the effective stress intensity factor range and the fatigue crack growth rate. [15]
A equation gives the rate of growth for a single cycle, but when the loading is not constant amplitude, changes in the loading can lead to temporary increases or decreases in the rate of growth. Additional equations have been developed to deal with some of these cases. The rate of growth is retarded when an overload occurs in a loading sequence. These loads generate are plastic zone that may delay the rate of growth. Two notable equations for modelling the delays occurring while the crack grows through the overload region are: [16]
where is the plastic zone corresponding to the ith cycle that occurs post the overload and is the distance between the crack and the extent of the plastic zone at the overload.
To predict the crack growth rate at the near threshold region, the following relation has been used [17]
To predict the crack growth rate in the intermediate regime, the Paris–Erdoğan equation is used [2]
In 1967, Forman proposed the following relation to account for the increased growth rates due to stress ratio and when approaching the fracture toughness [18]
McEvily and Groeger [19] proposed the following power-law relationship which considers the effects of both high and low values of
The NASGRO equation is used in the crack growth programs AFGROW, FASTRAN and NASGRO software. [20] It is a general equation that covers the lower growth rate near the threshold and the increased growth rate approaching the fracture toughness , as well as allowing for the mean stress effect by including the stress ratio . The NASGRO equation is
where , , , , , and are the equation coefficients.
In 1967, McClintock developed an equation for the upper limit of crack growth based on the cyclic crack tip opening displacement [21]
where is the flow stress, is the Young's modulus and is a constant typically in the range 0.1–0.5.
To account for the stress ratio effect, Walker suggested a modified form of the Paris–Erdogan equation [22]
where, is a material parameter which represents the influence of stress ratio on the fatigue crack growth rate. Typically, takes a value around , but can vary between . In general, it is assumed that compressive portion of the loading cycle has no effect on the crack growth by considering which gives This can be physically explained by considering that the crack closes at zero load and does not behave like a crack under compressive loads. In very ductile materials like Man-Ten steel, compressive loading does contribute to the crack growth according to . [23]
Elber modified the Paris–Erdogan equation to allow for crack closure with the introduction of the opening stress intensity level at which contact occurs. Below this level there is no movement at the crack tip and hence no growth. This effect has been used to explain the stress ratio effect and the increased rate of growth observed with short cracks. Elber's equation is [16]
The general form of the fatigue-crack growth rate in ductile and brittle materials is given by [21]
where, and are material parameters. Based on different crack-advance and crack-tip shielding mechanisms in metals, ceramics, and intermetallics, it is observed that the fatigue crack growth rate in metals is significantly dependent on term, in ceramics on , and intermetallics have almost similar dependence on and terms.
There are many computer programs that implement crack growth equations such as Nasgro, [24] AFGROW and Fastran. In addition, there are also programs that implement a probabilistic approach to crack growth that calculate the probability of failure throughout the life of a component. [25] [26]
Crack growth programs grow a crack from an initial flaw size until it exceeds the fracture toughness of a material and fails. Because the fracture toughness depends on the boundary conditions, the fracture toughness may change from plane strain conditions for a semi-circular surface crack to plane stress conditions for a through crack. The fracture toughness for plane stress conditions is typically twice as large as that for plane strain. However, because of the rapid rate of growth of a crack near the end of its life, variations in fracture toughness do not significantly alter the life of a component.
Crack growth programs typically provide a choice of:
The stress intensity factor is given by
where is the applied uniform tensile stress acting on the specimen in the direction perpendicular to the crack plane, is the crack length and is a dimensionless parameter that depends on the geometry of the specimen. The alternating stress intensity becomes
where is the range of the cyclic stress amplitude.
By assuming the initial crack size to be , the critical crack size before the specimen fails can be computed using as
The above equation in is implicit in nature and can be solved numerically if necessary.
For crack closure has negligible effect on the crack growth rate [27] and the Paris–Erdogan equation can be used to compute the fatigue life of a specimen before it reaches the critical crack size as
For the Griffith-Irwin crack growth model or center crack of length in an infinite sheet as shown in the figure 2, we have and is independent of the crack length. Also, can be considered to be independent of the crack length. By assuming the above integral simplifies to
by integrating the above expression for and cases, the total number of load cycles are given by
Now, for and critical crack size to be very large in comparison to the initial crack size will give
The above analytical expressions for the total number of load cycles to fracture are obtained by assuming . For the cases, where is dependent on the crack size such as the Single Edge Notch Tension (SENT), Center Cracked Tension (CCT) geometries, numerical integration can be used to compute .
For crack closure phenomenon has an effect on the crack growth rate and we can invoke Walker equation to compute the fatigue life of a specimen before it reaches the critical crack size as
This scheme is useful when is dependent on the crack size . The initial crack size is considered to be . The stress intensity factor at the current crack size is computed using the maximum applied stress as
Now, by substituting the stress intensity factor in Paris–Erdogan equation, the increment in the crack size is computed as
where is cycle step size. The new crack size becomes
where index refers to the current iteration step. The new crack size is used to calculate the stress intensity at maximum applied stress for the next iteration. This iterative process is continued until
Once this failure criterion is met, the simulation is stopped.
The schematic representation of the fatigue life prediction process is shown in figure 3.
The stress intensity factor in a SENT specimen (see, figure 4) under fatigue crack growth is given by [5]
The following parameters are considered for the calculation
MPa,, .
The critical crack length, , can be computed when as
By solving the above equation, the critical crack length is obtained as .
Now, invoking the Paris–Erdogan equation gives
By numerical integration of the above expression, the total number of load cycles to failure is obtained as .
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form and with parametric extension for arbitrary real constants a, b and non-zero c. It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c controls the width of the "bell".
Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture.
The Einstein–Hilbert action in general relativity is the action that yields the Einstein field equations through the stationary-action principle. With the (− + + +) metric signature, the gravitational part of the action is given as
In physics, the Polyakov action is an action of the two-dimensional conformal field theory describing the worldsheet of a string in string theory. It was introduced by Stanley Deser and Bruno Zumino and independently by L. Brink, P. Di Vecchia and P. S. Howe in 1976, and has become associated with Alexander Polyakov after he made use of it in quantizing the string in 1981. The action reads:
In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.
In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.
In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.
In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.
The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.
In statistics, the multivariate t-distribution is a multivariate probability distribution. It is a generalization to random vectors of the Student's t-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix t-distribution is distinct and makes particular use of the matrix structure.
The lateral earth pressure is the pressure that soil exerts in the horizontal direction. It is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and braced excavations.
Contact mechanics is the study of the deformation of solids that touch each other at one or more points. A central distinction in contact mechanics is between stresses acting perpendicular to the contacting bodies' surfaces and frictional stresses acting tangentially between the surfaces. Normal contact mechanics or frictionless contact mechanics focuses on normal stresses caused by applied normal forces and by the adhesion present on surfaces in close contact, even if they are clean and dry. Frictional contact mechanics emphasizes the effect of friction forces.
In mathematical finance, the Black–Scholes equation, also called the Black–Scholes–Merton equation, is a partial differential equation (PDE) governing the price evolution of derivatives under the Black–Scholes model. Broadly speaking, the term may refer to a similar PDE that can be derived for a variety of options, or more generally, derivatives.
In physics, particularly special relativity, light-cone coordinates, introduced by Paul Dirac and also known as Dirac coordinates, are a special coordinate system where two coordinate axes combine both space and time, while all the others are spatial.
The vibration of plates is a special case of the more general problem of mechanical vibrations. The equations governing the motion of plates are simpler than those for general three-dimensional objects because one of the dimensions of a plate is much smaller than the other two. This permits a two-dimensional plate theory to give an excellent approximation to the actual three-dimensional motion of a plate-like object.
Crack tip opening displacement (CTOD) or is the distance between the opposite faces of a crack tip at the 90° intercept position. The position behind the crack tip at which the distance is measured is arbitrary but commonly used is the point where two 45° lines, starting at the crack tip, intersect the crack faces. The parameter is used in fracture mechanics to characterize the loading on a crack and can be related to other crack tip loading parameters such as the stress intensity factor and the elastic-plastic J-integral.
In string theory, the Ramond–Neveu–Schwarz (RNS) formalism is an approach to formulating superstrings in which the worldsheet has explicit superconformal invariance but spacetime supersymmetry is hidden, in contrast to the Green–Schwarz formalism where the latter is explicit. It was originally developed by Pierre Ramond, André Neveu and John Schwarz in the RNS model in 1971, which gives rise to type II string theories and can also give type I string theory. Heterotic string theories can also be acquired through this formalism by using a different worldsheet action. There are various ways to quantize the string within this framework including light-cone quantization, old canonical quantization, and BRST quantization. A consistent string theory is only acquired if the spectrum of states is restricted through a procedure known as a GSO projection, with this projection being automatically present in the Green–Schwarz formalism.
Fastran is a computer program for calculating the rate of fatigue crack growth by combining crack growth equations and a simulation of the plasticity at the crack tip.
{{cite book}}
: CS1 maint: location (link)