Fatigue testing

Last updated
IABG Fatigue test of the Airbus A380 wing (showing the wing deflected upwards superimposed on the unloaded wing). The wing was tested for a total of 47500 flights which is 2.5 times the number of flights in 25 years of operation. Each 16 hour flight took 11 minutes to simulate on the fatigue test rig. IABG Test Setup A380 Dresden bent wing.jpg
IABG Fatigue test of the Airbus A380 wing (showing the wing deflected upwards superimposed on the unloaded wing). The wing was tested for a total of 47500 flights which is 2.5 times the number of flights in 25 years of operation. Each 16 hour flight took 11 minutes to simulate on the fatigue test rig.

Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. Fatigue tests are used on a range of components from coupons through to full size test articles such as automobiles and aircraft.

Contents

Fatigue tests on coupons are typically conducted using servo hydraulic test machines which are capable of applying large variable amplitude cyclic loads. [2] Constant amplitude testing can also be applied by simpler oscillating machines. The fatigue life of a coupon is the number of cycles it takes to break the coupon. This data can be used for creating stress-life or strain-life curves. The rate of crack growth in a coupon can also be measured, either during the test or afterward using fractography. Testing of coupons can also be carried out inside environmental chambers where the temperature, humidity and environment that may affect the rate of crack growth can be controlled.

Because of the size and unique shape of full size test articles, special test rigs are built to apply loads through a series of hydraulic or electric actuators. Actuators aim to reproduce the significant loads experienced by a structure, which in the case of aircraft, may consist of manoeuvre, gust, buffet and ground-air-ground (GAG) loading. A representative sample or block of loading is applied repeatedly until the safe life of the structure has been demonstrated or failures occur which need to be repaired. Instrumentation such as load cells, strain gauges and displacement gauges are installed on the structure to ensure the correct loading has been applied. Periodic inspections of the structure around critical stress concentrations such as holes and fittings are made to determine the time detectable cracks were found and to ensure any cracking that does occur, does not affect other areas of the test article. Because not all loads can be applied, any unbalanced structural loads are typically reacted out to the test floor through non-critical structure such as the undercarriage.

Airworthiness standards generally require a fatigue test to be carried out for large aircraft prior to certification to determine their safe life. [3] Small aircraft may demonstrate safety through calculations, although typically larger scatter or safety factors are used because of the additional uncertainty involved.

Coupon tests

MTS-810 Fatigue test machine GRC-2003-C-02070~orig.jpg
MTS-810 Fatigue test machine

Fatigue tests are used to obtain material data such as the rate of growth of a fatigue crack that can be used with crack growth equations to predict the fatigue life. These tests usually determine the rate of crack growth per cycle versus the stress intensity factor range , where the minimum stress intensity factor corresponds to the minimum load for and is taken to be zero for , and is the stress ratio . Standardised tests have been developed to ensure repeatability and to allow the stress intensity factor to be easily determined but other shapes can be used providing the coupon is large enough to be mostly elastic. [4]

Coupon shape

A variety of coupons can be used but some of the common ones are:


Instrumentation

The following instrumentation is commonly used for monitoring coupon tests:

Full scale fatigue tests

Fatigue test at Boeing Everett Boeing Everett 16.jpg
Fatigue test at Boeing Everett

Full-scale tests may be used to:

  1. Validate the proposed aircraft maintenance schedule.
  2. Demonstrate the safety of a structure that may be susceptible to widespread fatigue damage.
  3. Generate fatigue data
  4. Validate expectations for crack initiation and growth pattern.
  5. Identify critical locations
  6. Validate software used to design and manufacture the aircraft.

Fatigue tests can also be used to determine the extent that widespread fatigue damage may be a problem.

Test article

Certification requires knowing and accounting for the complete load history that has been experienced by a test article. Using test articles that have previously been used for static proof testing have caused problems where overloads have been applied and that can retard the rate of fatigue crack growth.

The test loads are typically recorded using a data acquisition system acquiring data from possibly thousands of inputs from instrumentation installed on the test article, including: strain gages, pressure gauges, load cells, LVDTs, etc.

Fatigue cracks typically initiate from high stress regions such as stress concentrations or material and manufacturing defects. It is important that the test article is representative of all of these features.

Cracks may initiate from the following sources:

Loading sequence

A representative block of loading is applied repeatedly until the safe life of the structure has been demonstrated or failures occur which need to be repaired. The size of the sequence is chosen so that the maximum loads which may cause retardation effects are applied sufficiently often, typically at least ten times throughout the test, so that there are no sequence effects. [9]

The loading sequence is generally filtered to eliminate applying small non-fatigue damaging cycles that would take too long to apply. Two types of filtering are typically used:

  1. deadband filtering eliminates small cycles that completely fall within a certain range such as +/-3g.
  2. rise-fall filtering eliminates small cycles that are less than a certain range such as 1g.

The testing rate of large structures is typically limited to a few Hz and needs to avoid the resonance frequency of the structure. [10]

Test rig

Fatigue test rig at the Wright-Patterson Air Force Base VIEW OF FATIGUE TESTING STATION. - Wright-Patterson Air Force Base, Area B, Building 65, Static Structural Test Laboratory, Between Eleventh and Twelfth Streets, Dayton, HAER OHIO,29-DAYT.V,1F-7.tif
Fatigue test rig at the Wright-Patterson Air Force Base

All components that are not part of the test article or instrumentation are termed the test rig. The following components are typically found in full scale fatigue tests:

Instrumentation

The following instrumentation is typically used on a fatigue test:

It is important to install any strain gauges on the test article that are also used for monitoring fleet aircraft. This allows the same damage calculations to be performed on the test article that are used to track the fatigue life of fleet aircraft. This is the primary way of ensuring fleet aircraft do not exceed the safe-life determined from the fatigue test.

Inspections

Inspections form a component of a fatigue test. It is important to know when a detectable crack occurs in order to determine the certified life of each component in addition to minimising the damage to surrounding structure and to develop repairs that have minimal impact on the certification of the adjacent structure. Non-destructive inspections may be carried out during testing and destructive tests may be used at the end of testing to ensure the structure retains its load carrying capacity.

Certification

Test interpretation and certification involves using the results from the fatigue test to justify the safe life and operation of an item. [11] The purpose of certification is to ensure the probability of failure in service is acceptably small. The following factors may need to be considered:

Airworthy standards typically require that an aircraft remains safe even with the structure in a degraded state due to the presence of fatigue cracking. [12]

Notable fatigue tests

Related Research Articles

<span class="mw-page-title-main">Fracture</span> Split of materials or structures under stress

Fracture is the appearance of a crack or complete separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band, or dislocation.

The field of strength of materials typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio. In addition, the mechanical element's macroscopic properties such as its length, width, thickness, boundary constraints and abrupt changes in geometry such as holes are considered.

<span class="mw-page-title-main">Compressive strength</span> Capacity of a material or structure to withstand loads tending to reduce size

In mechanics, compressive strength is the capacity of a material or structure to withstand loads tending to reduce size. In other words, compressive strength resists compression, whereas tensile strength resists tension. In the study of strength of materials, tensile strength, compressive strength, and shear strength can be analyzed independently.

<span class="mw-page-title-main">Fatigue (material)</span> Initiation and propagation of cracks in a material due to cyclic loading

In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface. The crack will continue to grow until it reaches a critical size, which occurs when the stress intensity factor of the crack exceeds the fracture toughness of the material, producing rapid propagation and typically complete fracture of the structure.

Stress–strain analysis is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material.

<span class="mw-page-title-main">Fracture mechanics</span> Study of propagation of cracks in materials

Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture.

<span class="mw-page-title-main">Bolted joint</span> Mechanical joint secured by a threaded fastener

A bolted joint is one of the most common elements in construction and machine design. It consists of a male threaded fastener that captures and joins other parts, secured with a matching female screw thread. There are two main types of bolted joint designs: tension joints and shear joints.

In engineering, damage tolerance is a property of a structure relating to its ability to sustain defects safely until repair can be effected. The approach to engineering design to account for damage tolerance is based on the assumption that flaws can exist in any structure and such flaws propagate with usage. This approach is commonly used in aerospace engineering, mechanical engineering, and civil engineering to manage the extension of cracks in structure through the application of the principles of fracture mechanics. A structure is considered to be damage tolerant if a maintenance program has been implemented that will result in the detection and repair of accidental damage, corrosion and fatigue cracking before such damage reduces the residual strength of the structure below an acceptable limit.

In safe-life design, products are intended to be removed from service at a specific design life.

<span class="mw-page-title-main">Stress intensity factor</span> Quantity in fracture mechanics; predicts stress intensity near a cracks tip

In fracture mechanics, the stress intensity factor is used to predict the stress state near the tip of a crack or notch caused by a remote load or residual stresses. It is a theoretical construct usually applied to a homogeneous, linear elastic material and is useful for providing a failure criterion for brittle materials, and is a critical technique in the discipline of damage tolerance. The concept can also be applied to materials that exhibit small-scale yielding at a crack tip.

<span class="mw-page-title-main">Fracture toughness</span> Stress intensity factor at which a cracks propagation increases drastically

In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.

<span class="mw-page-title-main">Paris' law</span> Formula in materials science

Paris' law is a crack growth equation that gives the rate of growth of a fatigue crack. The stress intensity factor characterises the load around a crack tip and the rate of crack growth is experimentally shown to be a function of the range of stress intensity seen in a loading cycle. The Paris equation is

<span class="mw-page-title-main">Compact tension specimen</span>

A compact tension specimen (CT) is a type of standard notched specimen in accordance with ASTM and ISO standards. Compact tension specimens are used extensively in the area of fracture mechanics and corrosion testing, in order to establish fracture toughness and fatigue crack growth data for a material.

Polymer fracture is the study of the fracture surface of an already failed material to determine the method of crack formation and extension in polymers both fiber reinforced and otherwise. Failure in polymer components can occur at relatively low stress levels, far below the tensile strength because of four major reasons: long term stress or creep rupture, cyclic stresses or fatigue, the presence of structural flaws and stress-cracking agents. Formations of submicroscopic cracks in polymers under load have been studied by x ray scattering techniques and the main regularities of crack formation under different loading conditions have been analyzed. The low strength of polymers compared to theoretically predicted values are mainly due to the many microscopic imperfections found in the material. These defects namely dislocations, crystalline boundaries, amorphous interlayers and block structure can all lead to the non-uniform distribution of mechanical stress.

Crack closure is a phenomenon in fatigue loading, where the opposing faces of a crack remain in contact even with an external load acting on the material. As the load is increased, a critical value will be reached at which time the crack becomes open. Crack closure occurs from the presence of material propping open the crack faces and can arise from many sources including plastic deformation or phase transformation during crack propagation, corrosion of crack surfaces, presence of fluids in the crack, or roughness at cracked surfaces.

<span class="mw-page-title-main">Crack tip opening displacement</span>

Crack tip opening displacement (CTOD) or is the distance between the opposite faces of a crack tip at the 90° intercept position. The position behind the crack tip at which the distance is measured is arbitrary but commonly used is the point where two 45° lines, starting at the crack tip, intersect the crack faces. The parameter is used in fracture mechanics to characterize the loading on a crack and can be related to other crack tip loading parameters such as the stress intensity factor and the elastic-plastic J-integral.

<span class="mw-page-title-main">Striation (fatigue)</span>

Striations are marks produced on the fracture surface that show the incremental growth of a fatigue crack. A striation marks the position of the crack tip at the time it was made. The term striation generally refers to ductile striations which are rounded bands on the fracture surface separated by depressions or fissures and can have the same appearance on both sides of the mating surfaces of the fatigue crack. Although some research has suggested that many loading cycles are required to form a single striation, it is now generally thought that each striation is the result of a single loading cycle.

<span class="mw-page-title-main">Crack growth equation</span>

A crack growth equation is used for calculating the size of a fatigue crack growing from cyclic loads. The growth of a fatigue crack can result in catastrophic failure, particularly in the case of aircraft. When many growing fatigue cracks interact with one another it is known as widespread fatigue damage. A crack growth equation can be used to ensure safety, both in the design phase and during operation, by predicting the size of cracks. In critical structure, loads can be recorded and used to predict the size of cracks to ensure maintenance or retirement occurs prior to any of the cracks failing. Safety factors are used to reduce the predicted fatigue life to a service fatigue life because of the sensitivity of the fatigue life to the size and shape of crack initiating defects and the variability between assumed loading and actual loading experienced by a component.

Fastran is a computer program for calculating the rate of fatigue crack growth by combining crack growth equations and a simulation of the plasticity at the crack tip.

Stress testing is a form of deliberately intense or thorough testing, used to determine the stability of a given system, critical infrastructure or entity. It involves testing beyond normal operational capacity, often to a breaking point, in order to observe the results.

References

  1. "Test programme and certification" . Retrieved 2020-02-27.
  2. "High-Rate Test Systems" (PDF). MTS. Retrieved 26 June 2019.
  3. "FAA PART 23—Airworthiness Standards: Normal Category Airplanes" . Retrieved 26 June 2019.
  4. 1 2 3 4 5 6 7 8 9 ASTM Committee E08.06 (2013). E647 Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International.{{cite book}}: CS1 maint: numeric names: authors list (link)
  5. "Single Edge Notch Tension Testing". NIST. Retrieved 26 June 2019.
  6. Newman, J. C.; Yamada, Y.; James, M. A. (2011). "Back-face strain compliance relation for compact specimens for wide range in crack lengths". Engineering Fracture Mechanics. 78 (15): 2707–2711. doi:10.1016/j.engfracmech.2011.07.001.
  7. Clark, G.; Yost, G. S.; Young, G. D. "Recovery of the RAAF MB326H Fleet; the Tale of an Aging Trainer Fleet". Fatigue in New and Ageing Aircraft. Retrieved 26 June 2019.
  8. 1 2 Redmond, Gerard. "From 'Safe Life' to Fracture Mechanics - F111 Aircraft Cold Temperature Proof Testing at RAAF Amberley". Archived from the original on 27 April 2019. Retrieved 17 April 2019.
  9. Design and Airworthiness Requirements for Service Aircraft (Report). United Kingdom, Ministry of Defence. 1982.
  10. 1 2 Molent, L. (2005). The History of Structural Fatigue Testing at Fishermans Bend Australia (PDF). Archived (PDF) from the original on June 26, 2019. Retrieved 26 June 2019.
  11. Design and Airworthiness Requirements for Service Aircraft. United Kingdom, Ministry of Defence. 1982.
  12. "FAA Airworthiness standards transport category airplanes, Damage - tolerance and fatigue evaluation of structure" . Retrieved 2021-02-02.
  13. "Vibration fatigue test of the F/A-18 empennage". Defence Science and Technology Group . Retrieved 26 June 2019.
  14. Simpson, D.L.; Landry, N.; Roussel, J.; Molent, L.; Schmidt, N. "The Canadian and Australian F/A-18 International Follow-On Structural Test Project" (PDF). Retrieved 26 June 2019.
  15. Molent, L.; Dixon, B.; Barter, S.; White, P.; Mills, T.; Maxfield, K.; Swanton, G.; Main, B. (2009). "Enhanced Teardown of Ex-Service F/A-18A/B/C/D Centre Fuselages". 25th ICAF Symposium – Rotterdam, 27–29 May 2009.

Further reading

"Boeing 787 conducts fatigue testing". YouTube . Retrieved 18 July 2019.