Crazing

Last updated
Crazing in polymers Crazing in polymers (cropped).jpg
Crazing in polymers

Crazing refers to a fine network of linear features which frequently precedes fracture in glassy thermoplastic polymers. Crazing occurs in regions of high hydrostatic tension, or in regions of very localized yielding, which leads to the formation of interpenetrating microvoids and small fibrils. If an applied tensile load is sufficient, these bridges elongate and break, causing the microvoids to grow and coalesce; as microvoids coalesce, cracks begin to form.

Contents

Polymers

Crazing occurs in polymers, because the material is held together by a combination of weaker Van der Waals forces and stronger covalent bonds. Sufficient local stress overcomes the Van der Waals force, allowing a narrow gap. Once the slack is taken out of the backbone chain, covalent bonds holding the chain together hinder further widening of the gap. The gaps in a craze are microscopic in size. Crazes can be seen because light reflects off the surfaces of the gaps. The gaps are bridged by fine filament called fibrils, which are molecules of the stretched backbone chain. The fibrils are only a few nanometers in diameter, and cannot be seen with a light microscope, but are visible with an electron microscope. [1] [2] [3]

The thickness profile of a crazing is like a sewing needle: the very tip of the crazing may be as thin as several atoms. As the distance from the tip increase, it tends to thicken gradually with the rate of the increase diminishing with distance. Therefore, the growth of crazing has a critical distance from the tip. The opening angle of the crazing lies between 2° and 10°. The boundary between crazing and surrounding bulk polymer is very sharp, the microstructure of which can be scaled down to 20Å or less, which means it can only be observed by electron microscopy. [4]

A craze is different from a crack in that it cannot be felt on the surface and it can continue to support a load. Furthermore, the process of craze growth prior to cracking absorbs fracture energy and effectively increases the fracture toughness of a polymer. The initial energy absorption per square meter in a craze region has been found to be up to several hundred times that of the uncrazed region, but quickly decreases and levels off. Crazes form at highly stressed regions associated with scratches, flaws, stress concentrations and molecular inhomogeneities. Crazes generally propagate perpendicular to the applied tension. Crazing occurs mostly in amorphous, brittle polymers like polystyrene (PS), acrylic (PMMA), and polycarbonate; it is typified by a whitening of the crazed region. The white colour is caused by light-scattering from the crazes.

The production of crazing is a reversible process, after applied compressive stress or elevated temperature (higher than glass transformation temperature), it may disappear and the materials will return to optically homogeneous state.

Shear banding is the narrow region with high level of shearing strain from local strain softening; it is also very common during the deformation of thermoplastic materials. One of the main differences between crazing and shear banding is that crazing occurs with an increase in volume, which shear banding does not. This means that under compression, many of these brittle, amorphous polymers will shear band rather than craze, as there is a contraction of volume instead of an increase. In addition, when crazing occurs, one will typically not observe "necking," or concentration of force upon one spot in a material. Rather, crazing will occur homogeneously throughout the material.

Rubber toughening

Rubber particles are often used to toughen thermoplastic materials. Particles with a greater compliance which are accordingly softer than the surrounding matrix act as stress concentrators. These regions of concentrated stress initiate crazes, propagating normal to the direction of applied force. This describes a phenomenon termed "multiple crazing", which, such as in HIPS, is a source of ductility for otherwise brittle polymer matrices.

After modification, the ability of absorbing energy will be increased significantly. For some brittle plastic materials, they can even go through brittle-ductile transformation. Previously, the rubber particles were considered as the main contributor to the increased energy absorption. It was proposed that rubber particles might gather around crack tips under tension and impede the growth of crack, or the contraction of rubber particles induced the decline of glass transformation temperature of the matrix. Nevertheless, experiments showed that the energy absorbed by rubber particles made up only 10% of the total energy, and the decrease of glass transformation temperature caused by rubber was only around 10 K, which was not enough for the matrix to yield at room temperature.

Schmitt and Bucknall developed the mechanism of rubber toughening according to the existence of stress whitening and shear yielding when the stress is lower than fracture strength. [5] They proposed that the rubber particles served as the center for stress concentration, hence initiated the brittle-ductile transformation and yielding of the matrix material. To specify, yielding happens in the form of crazing or shear band, which can consume a large portion of deformation energy.

Environment effect

Crazing can take place in glassy polymers under environmental effects. It is problematic because it requires a much lower stress state and sometimes happens after a long delay, which means it is hard to detect and avoid. For example, PMMA containers in daily use are quite resistive to humidity and temperature without any visible defects. After machine-washing and left in air for one or two days, they will shutter abruptly when wet with gin.[ citation needed ] During the process, the stress applied is negligible, but crazing is still found on the containers.

There are many theories that tried to explain the environmental effects upon formation of crazing, among which surface energy reduction and plasticization are widely accepted and well developed. [6] To eliminate the environmental crazing and cracking, many methods like surface coating, stress reduction are adopted. However, due to the complicity of the environmental effects, especially the effects in organic environment, it's hard to find a general solution and remove the effect completely.

Odontology

Crazing is also used as a term in odontology to describe fine cracks in the enamel of teeth.

Metaphor

The root sense of the word craze in English, meaning “to shatter, crush, or break,” dates to the 1300s. [7] The metaphorical senses familiar today derive from crazing in pottery: crazy meaning “diseased or sickly” dates to about 1570; “of unsound mind” to about 1610. [8]

Related Research Articles

<span class="mw-page-title-main">Ductility</span> Degree to which a material under stress irreversibly deforms before failure

Ductility is a mechanical property commonly described as a material's amenability to drawing. In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stress before failure. Ductility is an important consideration in engineering and manufacturing. It defines a material's suitability for certain manufacturing operations and its capacity to absorb mechanical overload. Some metals that are generally described as ductile include gold and copper, while platinum is the most ductile of all metals in pure form. However, not all metals experience ductile failure as some can be characterized with brittle failure like cast iron. Polymers generally can be viewed as ductile materials as they typically allow for plastic deformation.

<span class="mw-page-title-main">Plasticity (physics)</span> Non-reversible deformation of a solid material in response to applied forces

In physics and materials science, plasticity is the ability of a solid material to undergo permanent deformation, a non-reversible change of shape in response to applied forces. For example, a solid piece of metal being bent or pounded into a new shape displays plasticity as permanent changes occur within the material itself. In engineering, the transition from elastic behavior to plastic behavior is known as yielding.

<span class="mw-page-title-main">Fracture</span> Split of materials or structures under stress

Fracture is the appearance of a crack or complete separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band, or dislocation.

The field of strength of materials typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio. In addition, the mechanical element's macroscopic properties such as its length, width, thickness, boundary constraints and abrupt changes in geometry such as holes are considered.

<span class="mw-page-title-main">Brittleness</span> Liability of breakage from stress without significant plastic deformation

A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Breaking is often accompanied by a sharp snapping sound.

<span class="mw-page-title-main">Fibril</span> Thin Fibre

Fibrils are structural biological materials found in nearly all living organisms. Not to be confused with fibers or filaments, fibrils tend to have diameters ranging from 10–100 nanometers. Fibrils are not usually found alone but rather are parts of greater hierarchical structures commonly found in biological systems. Due to the prevalence of fibrils in biological systems, their study is of great importance in the fields of microbiology, biomechanics, and materials science.

<span class="mw-page-title-main">Intergranular fracture</span>

Intergranular fracture, intergranular cracking or intergranular embrittlement occurs when a crack propagates along the grain boundaries of a material, usually when these grain boundaries are weakened. The more commonly seen transgranular fracture, occurs when the crack grows through the material grains. As an analogy, in a wall of bricks, intergranular fracture would correspond to a fracture that takes place in the mortar that keeps the bricks together.

<span class="mw-page-title-main">Fracture toughness</span> Stress intensity factor at which a cracks propagation increases drastically

In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.

In materials science, environmental stress fracture or environment assisted fracture is the generic name given to premature failure under the influence of tensile stresses and harmful environments of materials such as metals and alloys, composites, plastics and ceramics.

<span class="mw-page-title-main">Ceramic engineering</span> Science and technology of creating objects from inorganic, non-metallic materials

Ceramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions. The term includes the purification of raw materials, the study and production of the chemical compounds concerned, their formation into components and the study of their structure, composition and properties.

<span class="mw-page-title-main">Embrittlement</span> Loss of ductility of a material, making it brittle

Embrittlement is a significant decrease of ductility of a material, which makes the material brittle. Embrittlement is used to describe any phenomena where the environment compromises a stressed material's mechanical performance, such as temperature or environmental composition. This is oftentimes undesirable as brittle fracture occurs quicker and can much more easily propagate than ductile fracture, leading to complete failure of the equipment. Various materials have different mechanisms of embrittlement, therefore it can manifest in a variety of ways, from slow crack growth to a reduction of tensile ductility and toughness.

Methods have been devised to modify the yield strength, ductility, and toughness of both crystalline and amorphous materials. These strengthening mechanisms give engineers the ability to tailor the mechanical properties of materials to suit a variety of different applications. For example, the favorable properties of steel result from interstitial incorporation of carbon into the iron lattice. Brass, a binary alloy of copper and zinc, has superior mechanical properties compared to its constituent metals due to solution strengthening. Work hardening has also been used for centuries by blacksmiths to introduce dislocations into materials, increasing their yield strengths.

Rubber toughening is a process in which rubber nanoparticles are interspersed within a polymer matrix to increase the mechanical robustness, or toughness, of the material. By "toughening" a polymer it is meant that the ability of the polymeric substance to absorb energy and plastically deform without fracture is increased. Considering the significant advantages in mechanical properties that rubber toughening offers, most major thermoplastics are available in rubber-toughened versions; for many engineering applications, material toughness is a deciding factor in final material selection.

<span class="mw-page-title-main">Environmental stress cracking</span> Brittle failure of thermoplastic polymers

Environmental Stress Cracking (ESC) is one of the most common causes of unexpected brittle failure of thermoplastic polymers known at present. According to ASTM D883, stress cracking is defined as "an external or internal crack in a plastic caused by tensile stresses less than its short-term mechanical strength". This type of cracking typically involves brittle cracking, with little or no ductile drawing of the material from its adjacent failure surfaces. Environmental stress cracking may account for around 15-30% of all plastic component failures in service. This behavior is especially prevalent in glassy, amorphous thermoplastics. Amorphous polymers exhibit ESC because of their loose structure which makes it easier for the fluid to permeate into the polymer. Amorphous polymers are more prone to ESC at temperature higher than their glass transition temperature (Tg) due to the increased free volume. When Tg is approached, more fluid can permeate into the polymer chains.

Material failure theory is an interdisciplinary field of materials science and solid mechanics which attempts to predict the conditions under which solid materials fail under the action of external loads. The failure of a material is usually classified into brittle failure (fracture) or ductile failure (yield). Depending on the conditions most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile.

TRIP steel are a class of high-strength steel alloys typically used in naval and marine applications and in the automotive industry. TRIP stands for "Transformation induced plasticity," which implies a phase transformation in the material, typically when a stress is applied. These alloys are known to possess an outstanding combination of strength and ductility.

Crystallization of polymers is a process associated with partial alignment of their molecular chains. These chains fold together and form ordered regions called lamellae, which compose larger spheroidal structures named spherulites. Polymers can crystallize upon cooling from melting, mechanical stretching or solvent evaporation. Crystallization affects optical, mechanical, thermal and chemical properties of the polymer. The degree of crystallinity is estimated by different analytical methods and it typically ranges between 10 and 80%, with crystallized polymers often called "semi-crystalline". The properties of semi-crystalline polymers are determined not only by the degree of crystallinity, but also by the size and orientation of the molecular chains.

Polymer fracture is the study of the fracture surface of an already failed material to determine the method of crack formation and extension in polymers both fiber reinforced and otherwise. Failure in polymer components can occur at relatively low stress levels, far below the tensile strength because of four major reasons: long term stress or creep rupture, cyclic stresses or fatigue, the presence of structural flaws and stress-cracking agents. Formations of submicroscopic cracks in polymers under load have been studied by x ray scattering techniques and the main regularities of crack formation under different loading conditions have been analyzed. The low strength of polymers compared to theoretically predicted values are mainly due to the many microscopic imperfections found in the material. These defects namely dislocations, crystalline boundaries, amorphous interlayers and block structure can all lead to the non-uniform distribution of mechanical stress.

<span class="mw-page-title-main">Bouligand structure</span>

A Bouligand structure is a layered and rotated microstructure resembling plywood, which is frequently found in naturally evolved materials. It consists of multiple lamellae, or layers, each one composed of aligned fibers. Adjacent lamellae are progressively rotated with respect to their neighbors. This structure enhances the mechanical properties of materials, especially its fracture resistance, and enables strength and in plane isotropy. It is found in various natural structures, including the cosmoid scale of the coelacanth, and the dactyl club of the mantis shrimp and many other stomatopods.

In materials science, toughening refers to the process of making a material more resistant to the propagation of cracks. When a crack propagates, the associated irreversible work in different materials classes is different. Thus, the most effective toughening mechanisms differ among different materials classes. The crack tip plasticity is important in toughening of metals and long-chain polymers. Ceramics have limited crack tip plasticity and primarily rely on different toughening mechanisms.

References

  1. Paul A. O’Connell; Gregory B. Mckenna. Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Inc. pp. 657–681.
  2. Doi, M.; Edwards, S. F. (1978). "Dynamics of concentrated polymer systems. Part 1.?Brownian motion in the equilibrium state". Journal of the Chemical Society, Faraday Transactions 2. 74: 1789–1801. doi:10.1039/F29787401789.
  3. McLeish, T. C. B.; Plummer, C. J. G.; Donald, A. M. (1989). "Crazing by disentanglement: Non-diffusive reptation". Polymer. 30 (9): 1651. doi:10.1016/0032-3861(89)90325-X.
  4. Kambour, R. P. (1973). "A review of crazing and fracture in thermoplastics". Journal of Polymer Science: Macromolecular Reviews. 7 (1): 1–154. doi:10.1002/pol.1973.230070101. ISSN   0076-2083.
  5. BUCKNALL, C. B.; CLAYTON, D. (1971-05-31). "Dilatometric Studies of Crazing in Rubber-toughened Plastics". Nature Physical Science. 231 (22): 107–108. Bibcode:1971NPhS..231..107B. doi:10.1038/physci231107a0. ISSN   0300-8746.
  6. Dunn, P.; Sansom, G. F. (August 1969). "The stress cracking of polyamides by metal salts. Part I. Metal halides". Journal of Applied Polymer Science. 13 (8): 1641–1655. doi:10.1002/app.1969.070130806. ISSN   0021-8995.
  7. "Craze | Origin and meaning of craze by Online Etymology Dictionary".
  8. "Crazy | Origin and meaning of crazy by Online Etymology Dictionary".