A crystal base for a representation of a quantum group on a -vector space is not a base of that vector space but rather a -base of where is a -lattice in that vector space. Crystal bases appeared in the work of Kashiwara ( 1990 ) and also in the work of Lusztig ( 1990 ). They can be viewed as specializations as of the canonical basis defined by Lusztig ( 1990 ).
As a consequence of its defining relations, the quantum group can be regarded as a Hopf algebra over the field of all rational functions of an indeterminate q over , denoted .
For simple root and non-negative integer , define
In an integrable module , and for weight , a vector (i.e. a vector in with weight ) can be uniquely decomposed into the sums
where , , only if , and only if .
Linear mappings can be defined on by
Let be the integral domain of all rational functions in which are regular at (i.e. a rational function is an element of if and only if there exist polynomials and in the polynomial ring such that , and ).
A crystal base for is an ordered pair , such that
To put this into a more informal setting, the actions of and are generally singular at on an integrable module . The linear mappings and on the module are introduced so that the actions of and are regular at on the module. There exists a -basis of weight vectors for , with respect to which the actions of and are regular at for all i. The module is then restricted to the free -module generated by the basis, and the basis vectors, the -submodule and the actions of and are evaluated at . Furthermore, the basis can be chosen such that at , for all , and are represented by mutual transposes, and map basis vectors to basis vectors or 0.
A crystal base can be represented by a directed graph with labelled edges. Each vertex of the graph represents an element of the -basis of , and a directed edge, labelled by i, and directed from vertex to vertex , represents that (and, equivalently, that ), where is the basis element represented by , and is the basis element represented by . The graph completely determines the actions of and at . If an integrable module has a crystal base, then the module is irreducible if and only if the graph representing the crystal base is connected (a graph is called "connected" if the set of vertices cannot be partitioned into the union of nontrivial disjoint subsets and such that there are no edges joining any vertex in to any vertex in ).
For any integrable module with a crystal base, the weight spectrum for the crystal base is the same as the weight spectrum for the module, and therefore the weight spectrum for the crystal base is the same as the weight spectrum for the corresponding module of the appropriate Kac–Moody algebra. The multiplicities of the weights in the crystal base are also the same as their multiplicities in the corresponding module of the appropriate Kac–Moody algebra.
It is a theorem of Kashiwara that every integrable highest weight module has a crystal base. Similarly, every integrable lowest weight module has a crystal base.
Let be an integrable module with crystal base and be an integrable module with crystal base . For crystal bases, the coproduct , given by
is adopted. The integrable module has crystal base , where . For a basis vector , define
The actions of and on are given by
The decomposition of the product two integrable highest weight modules into irreducible submodules is determined by the decomposition of the graph of the crystal base into its connected components (i.e. the highest weights of the submodules are determined, and the multiplicity of each highest weight is determined).
In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted .
In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are compact operators.
In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the canonical pairing of a vector space and its dual. In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression. The contraction of a single mixed tensor occurs when a pair of literal indices of the tensor are set equal to each other and summed over. In Einstein notation this summation is built into the notation. The result is another tensor with order reduced by 2.
In linear algebra, a square matrix is called diagonalizable or non-defective if it is similar to a diagonal matrix. That is, if there exists an invertible matrix and a diagonal matrix such that . This is equivalent to . This property exists for any linear map: for a finite-dimensional vector space , a linear map is called diagonalizable if there exists an ordered basis of consisting of eigenvectors of . These definitions are equivalent: if has a matrix representation as above, then the column vectors of form a basis consisting of eigenvectors of , and the diagonal entries of are the corresponding eigenvalues of ; with respect to this eigenvector basis, is represented by .
In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.
In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.
In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.
In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence.
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.
In mathematics, a complex structure on a real vector space is an automorphism of that squares to the minus identity, . Such a structure on allows one to define multiplication by complex scalars in a canonical fashion so as to regard as a complex vector space.
Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics.
In mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense. Here N must be the even number 2n, where n is the complex dimension of M.
In mathematics, Schubert calculus is a branch of algebraic geometry introduced in the nineteenth century by Hermann Schubert in order to solve various counting problems of projective geometry and, as such, is viewed as part of enumerative geometry. Giving it a more rigorous foundation was the aim of Hilbert's 15th problem. It is related to several more modern concepts, such as characteristic classes, and both its algorithmic aspects and applications remain of current interest. The term Schubert calculus is sometimes used to mean the enumerative geometry of linear subspaces of a vector space, which is roughly equivalent to describing the cohomology ring of Grassmannians. Sometimes it is used to mean the more general enumerative geometry of algebraic varieties that are homogenous spaces of simple Lie groups. Even more generally, Schubert calculus is sometimes understood as encompassing the study of analogous questions in generalized cohomology theories.
In conformal field theory and representation theory, a W-algebra is an associative algebra that generalizes the Virasoro algebra. W-algebras were introduced by Alexander Zamolodchikov, and the name "W-algebra" comes from the fact that Zamolodchikov used the letter W for one of the elements of one of his examples.
In mathematics, generalized Verma modules are a generalization of a (true) Verma module, and are objects in the representation theory of Lie algebras. They were studied originally by James Lepowsky in the 1970s. The motivation for their study is that their homomorphisms correspond to invariant differential operators over generalized flag manifolds. The study of these operators is an important part of the theory of parabolic geometries.
In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
This is a glossary of representation theory in mathematics.
In mathematics, the finite-dimensional representations of the complex classical Lie groups , , , , , can be constructed using the general representation theory of semisimple Lie algebras. The groups , , are indeed simple Lie groups, and their finite-dimensional representations coincide with those of their maximal compact subgroups, respectively , , . In the classification of simple Lie algebras, the corresponding algebras are