DCL2

Last updated
Endoribonuclease Dicer homolog 2
Dcl2.gif
Cartoon representation of Arabidopsis DCL2, Based on computational predictions using Alphafold2 and rendered with open software Mol Star * (https://alphafold.ebi.ac.uk/entry/Q3EBC8, https://molstar.org/viewer/)
Identifiers
Organism Arabidopsis thaliana
SymbolDCL2
Alt. symbolsAT3G03300
UniProt Q3EBC8
Search for
Structures Swiss-model
Domains InterPro

DCL2 (an abbreviation of Dicer-like 2) is a gene in plants that codes for the DCL2 protein, a ribonuclease III enzyme involved in processing exogenous double-stranded RNA (dsRNA) into 22 nucleotide small interference RNAs (siRNAs). [1]

Contents

Diverse sources of dsRNAs have been characterized, broadly classified as exogenous or endogenous. A classical example of exogenous derived dsRNAs are the viral genomes release during infection, specially from those double-stranded RNA viruses, where the cleavage of dsRNA produce small RNA products called viral siRNAs or vsi-RNAs. [2] Other examples of exogenous source of dsRNAs are transgenic with several insertion loci along the plant hos genome. [3] DCL2 also process endogenous sources as double-stranded RNAs derived of cis- natural antisense transcripts, generating 22nt short interfering RNA (natsi-RNAs); however, the biological relevance, evolutionary conservation and experimental validation of natsi-RNAs remains controversial. [4]

Function

Dicer proteins belongs to the RNaseIII-like family, a gene family with highly conserved endonuclease in eukaryotes, with procaryotes representatives. [5] In Arabidopsis and most of land Plants, there are mainly four Dicer-like proteins (DCL): DCL1, DCL2, DCL3, and DCL4. They all contain five domains, following the order from N-terminus to C-terminus: DEXD-helicase, helicase-C, domain of unknown function 283 (DUF283), Piwi/Argonaute/Zwille (PAZ) domain, two tandem RNase III domains, and one or two dsRNA-binding domains (dsRBDs). [5] In general, the helicase domain of dicer-like proteins utilizes ATP hydrolysis to facilitate the unwinding of dsRNA. [5] The DUF283 domain have been recently associated as a protein domain involve in facilitation of RNA-RNA base pairing and RNA-binding. [6] The PAZ and RNase III domains are essential for dsRNA cleavage via the recognition of dsRNA ends by PAZ domain, the RNase III domains cuts one of the strands of dsRNA. [7]

DCL2 plays an essential role in transitive silencing of transgenes by processing secondary siRNAs, including trans-acting siRNA. [4] To do so, it does requires DCL4 and RDR6, which amplifies the silencing by using the mRNA target of the DCL2's generated 22nt siRNA, as substrate to generate secondary siRNAs, providing an efficient mechanism for long-distance silencing, in a phenomena called transitivity of RNA silencing. [8]

DCL2 may participate as well with DCL3 in the production of 24 nucleotide repeat-associated siRNAs (ra-siRNAs) derived from heterochromatic regions, genomic regions silenced by the presence of DNA repetitive elements such as transposons. [9]

Transitive and systemic RNA silencing

A key difference between DCL1 and others DCLs 2,3 and 4 proteins is the amplification capacity of the pathways specific for the later protein. The involvement of RDR proteins extends the small RNA-target complex beyond the original trigger-spot. The subset of siRNA used in signal amplification are called transitive or secondary siRNAs and the process of amplification is called transitivity. [8] The amplification propagates the secondary siRNA and its target specific silencing activity from one tissue to another, eventually reaching the whole plant's tissues, in a process called systemic silencing. [8]

Related Research Articles

Gene knockdown is an experimental technique by which the expression of one or more of an organism's genes is reduced. The reduction can occur either through genetic modification or by treatment with a reagent such as a short DNA or RNA oligonucleotide that has a sequence complementary to either gene or an mRNA transcript.

<span class="mw-page-title-main">Ribonuclease</span> Class of enzyme that catalyzes the degradation of RNA

Ribonuclease is a type of nuclease that catalyzes the degradation of RNA into smaller components. Ribonucleases can be divided into endoribonucleases and exoribonucleases, and comprise several sub-classes within the EC 2.7 and 3.1 classes of enzymes.

<span class="mw-page-title-main">Ribonuclease H</span> Enzyme family

Ribonuclease H is a family of non-sequence-specific endonuclease enzymes that catalyze the cleavage of RNA in an RNA/DNA substrate via a hydrolytic mechanism. Members of the RNase H family can be found in nearly all organisms, from bacteria to archaea to eukaryotes.

<span class="mw-page-title-main">Small interfering RNA</span> Biomolecule

Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a class of double-stranded RNA at first non-coding RNA molecules, typically 20-24 base pairs in length, similar to miRNA, and operating within the RNA interference (RNAi) pathway. It interferes with the expression of specific genes with complementary nucleotide sequences by degrading mRNA after transcription, preventing translation.

<span class="mw-page-title-main">Dicer</span> Enzyme that cleaves double-stranded RNA (dsRNA) into short dsRNA fragments

Dicer, also known as endoribonuclease Dicer or helicase with RNase motif, is an enzyme that in humans is encoded by the DICER1 gene. Being part of the RNase III family, Dicer cleaves double-stranded RNA (dsRNA) and pre-microRNA (pre-miRNA) into short double-stranded RNA fragments called small interfering RNA and microRNA, respectively. These fragments are approximately 20–25 base pairs long with a two-base overhang on the 3′-end. Dicer facilitates the activation of the RNA-induced silencing complex (RISC), which is essential for RNA interference. RISC has a catalytic component Argonaute, which is an endonuclease capable of degrading messenger RNA (mRNA).

The RNA-induced silencing complex, or RISC, is a multiprotein complex, specifically a ribonucleoprotein, which functions in gene silencing via a variety of pathways at the transcriptional and translational levels. Using single-stranded RNA (ssRNA) fragments, such as microRNA (miRNA), or double-stranded small interfering RNA (siRNA), the complex functions as a key tool in gene regulation. The single strand of RNA acts as a template for RISC to recognize complementary messenger RNA (mRNA) transcript. Once found, one of the proteins in RISC, Argonaute, activates and cleaves the mRNA. This process is called RNA interference (RNAi) and it is found in many eukaryotes; it is a key process in defense against viral infections, as it is triggered by the presence of double-stranded RNA (dsRNA).

<span class="mw-page-title-main">Ribonuclease L</span>

Ribonuclease L or RNase L, known sometimes as ribonuclease 4 or 2'-5' oligoadenylate synthetase-dependent ribonuclease — is an interferon (IFN)-induced ribonuclease which, upon activation, destroys all RNA within the cell. RNase L is an enzyme that in humans is encoded by the RNASEL gene.

<span class="mw-page-title-main">Ribonuclease III</span> Class of enzymes

Ribonuclease III (BRENDA 3.1.26.3) is a type of ribonuclease that recognizes dsRNA and cleaves it at specific targeted locations to transform them into mature RNAs. These enzymes are a group of endoribonucleases that are characterized by their ribonuclease domain, which is labelled the RNase III domain. They are ubiquitous compounds in the cell and play a major role in pathways such as RNA precursor synthesis, RNA Silencing, and the pnp autoregulatory mechanism.

<span class="mw-page-title-main">Argonaute</span> Protein that plays a role in RNA silencing process

The Argonaute protein family, first discovered for its evolutionarily conserved stem cell function, plays a central role in RNA silencing processes as essential components of the RNA-induced silencing complex (RISC). RISC is responsible for the gene silencing phenomenon known as RNA interference (RNAi). Argonaute proteins bind different classes of small non-coding RNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). Small RNAs guide Argonaute proteins to their specific targets through sequence complementarity, which then leads to mRNA cleavage, translation inhibition, and/or the initiation of mRNA decay.

<span class="mw-page-title-main">Drosha</span> Ribonuclease III enzyme

Drosha is a Class 2 ribonuclease III enzyme that in humans is encoded by the DROSHA gene. It is the primary nuclease that executes the initiation step of miRNA processing in the nucleus. It works closely with DGCR8 and in correlation with Dicer. It has been found significant in clinical knowledge for cancer prognosis and HIV-1 replication.

<span class="mw-page-title-main">Piwi</span>

Piwi genes were identified as regulatory proteins responsible for stem cell and germ cell differentiation. Piwi is an abbreviation of P-elementInduced WImpy testis in Drosophila. Piwi proteins are highly conserved RNA-binding proteins and are present in both plants and animals. Piwi proteins belong to the Argonaute/Piwi family and have been classified as nuclear proteins. Studies on Drosophila have also indicated that Piwi proteins have no slicer activity conferred by the presence of the Piwi domain. In addition, Piwi associates with heterochromatin protein 1, an epigenetic modifier, and piRNA-complementary sequences. These are indications of the role Piwi plays in epigenetic regulation. Piwi proteins are also thought to control the biogenesis of piRNA as many Piwi-like proteins contain slicer activity which would allow Piwi proteins to process precursor piRNA into mature piRNA.

The degradosome is a multiprotein complex present in most bacteria that is involved in the processing of ribosomal RNA and the degradation of messenger RNA and is regulated by Non-coding RNA. It contains the proteins RNA helicase B, RNase E and Polynucleotide phosphorylase.

Trans-acting siRNA are a class of small interfering RNA (siRNA) that repress gene expression through post-transcriptional gene silencing in land plants. Precursor transcripts from TAS loci are polyadenylated and converted to double-stranded RNA, and are then processed into 21-nucleotide-long RNA duplexes with overhangs. These segments are incorporated into a RNA-induced silencing complex (RISC) and direct the sequence-specific cleavage of target mRNA. Ta-siRNAs are classified as siRNA because they arise from double-stranded RNA (dsRNA).

RNA polymerase IV is an enzyme that synthesizes small interfering RNA (siRNA) in plants, which silence gene expression. RNAP IV belongs to a family of enzymes that catalyze the process of transcription known as RNA Polymerases, which synthesize RNA from DNA templates. Discovered via phylogenetic studies of land plants, genes of RNAP IV are thought to have resulted from multistep evolution processes that occurred in RNA Polymerase II phylogenies. Such an evolutionary pathway is supported by the fact that RNAP IV is composed of 12 protein subunits that are either similar or identical to RNA polymerase II, and is specific to plant genomes. Via its synthesis of siRNA, RNAP IV is involved in regulation of heterochromatin formation in a process known as RNA directed DNA Methylation (RdDM).

<span class="mw-page-title-main">RNA interference</span> Biological process of gene regulation

RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression by double-stranded RNA, through translational or transcriptional repression. Historically, RNAi was known by other names, including co-suppression, post-transcriptional gene silencing (PTGS), and quelling. The detailed study of each of these seemingly different processes elucidated that the identity of these phenomena were all actually RNAi. Andrew Fire and Craig C. Mello shared the 2006 Nobel Prize in Physiology or Medicine for their work on RNAi in the nematode worm Caenorhabditis elegans, which they published in 1998. Since the discovery of RNAi and its regulatory potentials, it has become evident that RNAi has immense potential in suppression of desired genes. RNAi is now known as precise, efficient, stable and better than antisense therapy for gene suppression. Antisense RNA produced intracellularly by an expression vector may be developed and find utility as novel therapeutic agents.

RDE-1 is a primary Argonaute protein required for RNA-mediated interference (RNAi) in Caenorhabditis elegans. The rde-1 gene locus was first characterized in C. elegans mutants resistant to RNAi, and is a member of a highly conserved Piwi gene family that includes plant, Drosophila, and vertebrate homologs.

<span class="mw-page-title-main">Microprocessor complex</span>

The microprocessor complex is a protein complex involved in the early stages of processing microRNA (miRNA) and RNA interference (RNAi) in animal cells. The complex is minimally composed of the ribonuclease enzyme Drosha and the dimeric RNA-binding protein DGCR8, and cleaves primary miRNA substrates to pre-miRNA in the cell nucleus. Microprocessor is also the smaller of the two multi-protein complexes that contain human Drosha.

<span class="mw-page-title-main">DCL1</span>

DCL1 is a gene in plants that codes for the DCL1 protein, a ribonuclease III enzyme involved in processing double-stranded RNA (dsRNA) and microRNA (miRNA). Although DCL1, also called Endoribonuclease Dicer homolog 1, is named for its homology with the metazoan protein Dicer, its role in miRNA biogenesis is somewhat different, due to substantial differences in miRNA maturation processes between plants and animals, as well due to additional downstream plant-specific pathways, where DCL1 paralogs like DCL4 participate, such Trans-acting siRNA biogenesis.

<span class="mw-page-title-main">RNA silencing suppressor p19</span> Viral protein

RNA silencing suppressor p19 is a protein expressed from the ORF4 gene in the genome of tombusviruses. These viruses are positive-sense single-stranded RNA viruses that infect plant cells, in which RNA silencing forms a widespread and robust antiviral defense system. The p19 protein serves as a counter-defense strategy, specifically binding the 19- to 21-nucleotide double-stranded RNAs that function as small interfering RNA (siRNA) in the RNA silencing system. By sequestering siRNA, p19 suppresses RNA silencing and promotes viral proliferation. The p19 protein is considered a significant virulence factor and a component of an evolutionary arms race between plants and their pathogens.

<span class="mw-page-title-main">DCL3</span> "Ribonucleases", "Gene silencing", "non-coding RNAs", "Plant proteins", "Protein stubs"

DCL3 is a gene in plants that codes for the DCL3 protein, a ribonuclease III enzyme involved in plants specific pathway RNA-directed DNA methylation. Where DCL3 cleaves endogenous double-stranded RNAs into 24 nucleotide small interfering RNAs. The main difference to other DCLs is the dsRNA source, which precursor for DCL3 is generally transcribed in heterochromatic regions by the RNA polymerase complex, RNA polymerase IV, producing single-stranded RNA roughly of 30 to 45 nucleotides in length, which are converted into dsRNA by RNA-dependent RNA polymerase 2. Once cleaved by DCL3, the 24-nt siRNA strand is loaded into AGO4, which interacts with Pol V–transcribed long noncoding RNAs and recruits domains-rearranged methylase 2, facilitating DNA methylation.

References

  1. Jin L, Chen M, Xiang M, Guo Z (February 2022). "RNAi-Based Antiviral Innate Immunity in Plants". Viruses. 14 (2): 432. doi: 10.3390/v14020432 . PMC   8875485 . PMID   35216025.
  2. Sanan-Mishra N, Abdul Kader Jailani A, Mandal B, Mukherjee SK (2021-03-02). "Secondary siRNAs in Plants: Biosynthesis, Various Functions, and Applications in Virology". Frontiers in Plant Science. 12: 610283. doi: 10.3389/fpls.2021.610283 . PMC   7960677 . PMID   33737942.
  3. Stam M (January 1997). "Review Article: The Silence of Genes in Transgenic Plants". Annals of Botany. 79 (1): 3–12. doi: 10.1006/anbo.1996.0295 .
  4. 1 2 Meyers BC, Zhan J, Shevela D, Slotkin KR (2022), Plant Small RNAs: Biogenesis and Functions, Agrisera Educational Poster Collection, Poster 6, 2022, Figshare, doi:10.6084/m9.figshare.21186073 , retrieved 2022-11-06
  5. 1 2 3 Cenik ES, Fukunaga R, Lu G, Dutcher R, Wang Y, Tanaka Hall TM, Zamore PD (April 2011). "Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease". Molecular Cell. 42 (2): 172–184. doi:10.1016/j.molcel.2011.03.002. PMC   3115569 . PMID   21419681.
  6. Szczepanska A, Wojnicka M, Kurzynska-Kokorniak A (August 2021). "The Significance of the DUF283 Domain for the Activity of Human Ribonuclease Dicer". International Journal of Molecular Sciences. 22 (16): 8690. doi: 10.3390/ijms22168690 . PMC   8395393 . PMID   34445396.
  7. Welker NC, Pavelec DM, Nix DA, Duchaine TF, Kennedy S, Bass BL (May 2010). "Dicer's helicase domain is required for accumulation of some, but not all, C. elegans endogenous siRNAs". RNA. 16 (5): 893–903. doi:10.1261/rna.2122010. PMC   2856884 . PMID   20354150.
  8. 1 2 3 Choudhary S, Thakur S, Bhardwaj P (August 2019). "Molecular basis of transitivity in plant RNA silencing". Molecular Biology Reports. 46 (4): 4645–4660. doi:10.1007/s11033-019-04866-9. PMID   31098805. S2CID   155103992.
  9. Benoit M (2020). "Slice and Dice: DCL2 Mediates the Production of 22-Nucleotide siRNAs that Influence Trait Variation in Soybean". The Plant Cell. 32 (12): 3646–3647. doi:10.1105/tpc.20.00884. PMC   7721339 . PMID   33093146.