DNA cross-link repair 1B protein is a protein that in humans is encoded by the DCLRE1B gene. [5]
DNA interstrand cross-links prevent strand separation, thereby physically blocking transcription, replication, and segregation of DNA. DCLRE1B is one of several evolutionarily conserved genes involved in repair of interstrand cross-links (Dronkert et al., 2000).[supplied by OMIM] [5]
The DCLRE1B/SNM1B/Apollo protein is a repair exonuclease that digests double-stranded and single-stranded DNA with a 5’ to 3’ directionality. [6]
Using an SNM1B/Apollo knockout mouse model, evidence was obtained that SNM1B/Apollo protein is required to protect telomeres against illegitimate non-homologous end joining that can result in genomic instability and consequently in multi-organ developmental failure. [7]
In a human patient with Hoyeraal-Hreidarsson syndrome, a dominant negative mutation in the SNM1B/Apollo gene was discovered. [8] This mutation hampered the proper replication of telomeres, leading to major telomeric dysfunction and cellular senescence. SNM1B/Apollo protein appears to be a crucial factor in telomere maintenance, independent of its function in repairing DNA inter-strand crosslinks. [8]
Werner syndrome ATP-dependent helicase, also known as DNA helicase, RecQ-like type 3, is an enzyme that in humans is encoded by the WRN gene. WRN is a member of the RecQ Helicase family. Helicase enzymes generally unwind and separate double-stranded DNA. These activities are necessary before DNA can be copied in preparation for cell division. Helicase enzymes are also critical for making a blueprint of a gene for protein production, a process called transcription. Further evidence suggests that Werner protein plays a critical role in repairing DNA. Overall, this protein helps maintain the structure and integrity of a person's DNA.
Ku80 is a protein that, in humans, is encoded by the XRCC5 gene. Together, Ku70 and Ku80 make up the Ku heterodimer, which binds to DNA double-strand break ends and is required for the non-homologous end joining (NHEJ) pathway of DNA repair. It is also required for V(D)J recombination, which utilizes the NHEJ pathway to promote antigen diversity in the mammalian immune system.
Double-strand break repair protein MRE11 is an enzyme that in humans is encoded by the MRE11 gene. The gene has been designated MRE11A to distinguish it from the pseudogene MRE11B that is nowadays named MRE11P1.
Telomeric repeat-binding factor 2 is a protein that is present at telomeres throughout the cell cycle. It is also known as TERF2, TRF2, and TRBF2, and is encoded in humans by the TERF2 gene. It is a component of the shelterin nucleoprotein complex and a second negative regulator of telomere length, playing a key role in the protective activity of telomeres. It was first reported in 1997 in the lab of Titia de Lange, where a DNA sequence similar, but not identical, to TERF1 was discovered, with respect to the Myb-domain. De Lange isolated the new Myb-containing protein sequence and called it TERF2.
Telomeric repeat-binding factor 1 is a protein that in humans is encoded by the TERF1 gene.
DNA repair protein RAD50, also known as RAD50, is a protein that in humans is encoded by the RAD50 gene.
H/ACA ribonucleoprotein complex subunit 4 is a protein that in humans is encoded by the gene DKC1.
Exonuclease 1 is an enzyme that in humans is encoded by the EXO1 gene.
Protection of telomeres protein 1 is a protein that in humans is encoded by the POT1 gene.
Tankyrase, also known as tankyrase 1, is an enzyme that in humans is encoded by the TNKS gene. It inhibits the binding of TERF1 to telomeric DNA. Tankyrase attracts substantial interest in cancer research through its interaction with AXIN1 and AXIN2, which are negative regulators of pro-oncogenic β-catenin signaling. Importantly, activity in the β-catenin destruction complex can be increased by tankyrase inhibitors and thus such inhibitors are a potential therapeutic option to reduce the growth of β-catenin-dependent cancers.
Three prime repair exonuclease 2 is an enzyme that in humans is encoded by the TREX2 gene.
Adrenocortical dysplasia protein homolog is a protein that in humans is encoded by the ACD gene.
Telomeric repeat-binding factor 2-interacting protein 1 also known as repressor activator protein 1 (Rap1) is a protein that in humans is encoded by the TERF2IP gene.
E3 ubiquitin-protein ligase FANCL is an enzyme that in humans is encoded by the FANCL gene.
Tankyrase-2 is an enzyme that in humans is encoded by the TNKS2 gene.
DNA cross-link repair 1A protein is a protein that in humans is encoded by the DCLRE1A gene.
SLX4 is a protein involved in DNA repair, where it has important roles in the final steps of homologous recombination. Mutations in the gene are associated with the disease Fanconi anemia.
Shelterin is a protein complex known to protect telomeres in many eukaryotes from DNA repair mechanisms, as well as to regulate telomerase activity. In mammals and other vertebrates, telomeric DNA consists of repeating double-stranded 5'-TTAGGG-3' (G-strand) sequences along with the 3'-AATCCC-5' (C-strand) complement, ending with a 50-400 nucleotide 3' (G-strand) overhang. Much of the final double-stranded portion of the telomere forms a T-loop (Telomere-loop) that is invaded by the 3' (G-strand) overhang to form a small D-loop (Displacement-loop).
FANCD2/FANCI-associated nuclease 1 (KIAA1018) is an enzyme that in humans is encoded by the FAN1 gene. It is a structure dependent endonuclease. It is thought to play an important role in the Fanconi Anemia (FA) pathway.
SLX4 interacting protein is a protein that in humans is encoded by the SLX4IP gene.