DDIT4

Last updated
DDIT4
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases DDIT4 , Dig2, REDD-1, REDD1, DNA damage inducible transcript 4
External IDs OMIM: 607729 MGI: 1921997 HomoloGene: 10400 GeneCards: DDIT4
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_019058

NM_029083

RefSeq (protein)

NP_061931

NP_083359

Location (UCSC) Chr 10: 72.27 – 72.28 Mb Chr 10: 59.79 – 59.79 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

DNA-damage-inducible transcript 4 (DDIT4) protein also known as protein regulated in development and DNA damage response 1 (REDD1) is a protein that in humans is encoded by the DDIT4 gene. [5] [6]

Contents

Function

DDIT4 acts as a negative regulator of mTOR, [7] a serine/threonine kinase that regulates a variety of cellular functions such as growth, proliferation and autophagy. [8] In particular, upregulation of HIF-1 in response to hypoxia upregulates DDIT4, [5] leading to activation of Tsc1/2 via 14–3–3 shuttling [9] and subsequent downregulation of mTOR via Rheb. [10] In addition to hypoxia, DDIT4 expression has also been shown to be activated by DNA damage [11] and energy stress. [12]

Clinical significance

Clinical interest in DDIT4 is based primarily on its effect on mTOR, which has been associated with aging [13] and linked with diseases such as tuberous sclerosis, lymphangioleiomyomatosis, [14] diabetes, [13] and cancer. In particular, the overactivation of mTOR in many cancer types [8] has led to the development of mTOR inhibitors for cancer treatment. DDIT4 has begun to receive attention in this regard via the diabetes drug Metformin which has been shown to reduce cancer risk and increase DDIT4 expression. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Von Hippel–Lindau tumor suppressor</span> Mammalian protein found in Homo sapiens

The Von Hippel–Lindau tumor suppressor also known as pVHL is a protein that, in humans, is encoded by the VHL gene. Mutations of the VHL gene are associated with Von Hippel–Lindau disease.

<span class="mw-page-title-main">TSC2</span>

Tuberous Sclerosis Complex 2 (TSC2), also known as Tuberin, is a protein that in humans is encoded by the TSC2 gene.

<span class="mw-page-title-main">DNA damage-inducible transcript 3</span> Protein-coding gene in the species Homo sapiens

DNA damage-inducible transcript 3, also known as C/EBP homologous protein (CHOP), is a pro-apoptotic transcription factor that is encoded by the DDIT3 gene. It is a member of the CCAAT/enhancer-binding protein (C/EBP) family of DNA-binding transcription factors. The protein functions as a dominant-negative inhibitor by forming heterodimers with other C/EBP members, preventing their DNA binding activity. The protein is implicated in adipogenesis and erythropoiesis and has an important role in the cell's stress response.

<span class="mw-page-title-main">NDRG1</span> Protein-coding gene in the species Homo sapiens

Protein NDRG1 is a protein that in humans is encoded by the NDRG1 gene.

<span class="mw-page-title-main">N-alpha-acetyltransferase 10</span> Protein-coding gene in the species Homo sapiens

N-alpha-acetyltransferase 10 (NAA10) also known as NatA catalytic subunit Naa10 and arrest-defective protein 1 homolog A (ARD1A) is an enzyme subunit that in humans is encoded NAA10 gene. Together with its auxiliary subunit Naa15, Naa10 constitutes the NatA complex that specifically catalyzes the transfer of an acetyl group from acetyl-CoA to the N-terminal primary amino group of certain proteins. In higher eukaryotes, 5 other N-acetyltransferase (NAT) complexes, NatB-NatF, have been described that differ both in substrate specificity and subunit composition.

<span class="mw-page-title-main">ZBTB33</span> Protein-coding gene in the species Homo sapiens

Transcriptional regulator Kaiso is a protein that in humans is encoded by the ZBTB33 gene. This gene encodes a transcriptional regulator with bimodal DNA-binding specificity, which binds to methylated CGCG and also to the non-methylated consensus KAISO-binding site TCCTGCNA. The protein contains an N-terminal POZ/BTB domain and 3 C-terminal zinc finger motifs. It recruits the N-CoR repressor complex to promote histone deacetylation and the formation of repressive chromatin structures in target gene promoters. It may contribute to the repression of target genes of the Wnt signaling pathway, and may also activate transcription of a subset of target genes by the recruitment of catenin delta-2 (CTNND2). Its interaction with catenin delta-1 (CTNND1) inhibits binding to both methylated and non-methylated DNA. It also interacts directly with the nuclear import receptor Importin-α2, which may mediate nuclear import of this protein. Alternatively spliced transcript variants encoding the same protein have been identified.

<span class="mw-page-title-main">EIF2AK1</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 2-alpha kinase 1 is an enzyme that in humans is encoded by the EIF2AK1 gene.

<span class="mw-page-title-main">CALCOCO1</span>

Calcium-binding and coiled-coil domain-containing protein 1 is a protein that in humans is encoded by the CALCOCO1 gene.

<span class="mw-page-title-main">HIGD1A</span>

HIG1 domain family member 1A (HIGD1A), also known as hypoglycemia/hypoxia inducible mitochondrial protein1-a (HIMP1-a) and hypoxia induced gene 1 (HIG1), is a protein that in humans is encoded by the HIGD1A gene on chromosome 3. This protein promotes mitochondrial homeostasis and survival of cells under stress and is involved in inflammatory and hypoxia-related diseases, including atherosclerosis, ischemic heart disease, and Alzheimer’s disease, as well as cancer.

<span class="mw-page-title-main">WIPI2</span>

WD repeat domain phosphoinositide-interacting protein 2 is a protein that in humans is encoded by the WIPI2 gene.

<span class="mw-page-title-main">RCBTB1</span> Protein-coding gene in the species Homo sapiens

RCC1 and BTB domain-containing protein 1 is a protein that in humans is encoded by the RCBTB1 gene.

<span class="mw-page-title-main">SNN (gene)</span>

Stannin is a protein that in humans is encoded by the SNN gene.

<span class="mw-page-title-main">ASCC3</span> Protein-coding gene in the species Homo sapiens

Activating signal cointegrator 1 complex subunit 3 is a protein that in humans is encoded by the ASCC3 gene.

<span class="mw-page-title-main">SYNPO2</span>

Myopodin protein, also called Synaptopodin-2 is a protein that in humans is encoded by the SYNPO2 gene. Myopodin is expressed in cardiac, smooth muscle and skeletal muscle, and localizes to Z-disc structures.

<span class="mw-page-title-main">DEPTOR</span> Protein-coding gene in the species Homo sapiens

DEP domain-containing mTOR-interacting protein (DEPTOR) also known as DEP domain-containing protein 6 (DEPDC6) is a protein that in humans is encoded by the DEPTOR gene.

<span class="mw-page-title-main">SESN2</span> Protein-coding gene in the species Homo sapiens

Sestrin-2 also known as Hi95 is a protein that in humans is encoded by the SESN2 gene.

Tuberous sclerosis proteins 1 and 2, also known as TSC1 (hamartin) and TSC2 (tuberin), form a protein-complex. The encoding two genes are TSC1 and TSC2. The complex is known as a tumor suppressor. Mutations in these genes can cause tuberous sclerosis complex. Depending on the grade of the disease, intellectual disability, epilepsy and tumors of the skin, retina, heart, kidney and the central nervous system can be symptoms.

mTORC1 Protein complex

mTORC1, also known as mammalian target of rapamycin complex 1 or mechanistic target of rapamycin complex 1, is a protein complex that functions as a nutrient/energy/redox sensor and controls protein synthesis.

<span class="mw-page-title-main">FAM162A</span>

Human growth and transformation-dependent protein (HGTD-P), also called E2-induced gene 5 protein (E2IG5), is a protein that in humans is encoded by the FAM162A gene on chromosome 3. This protein promotes intrinsic apoptosis in response to hypoxia via interactions with hypoxia-inducible factor-1α (HIF-1α). As a result, it has been associated with cerebral ischemia, myocardial infarction, and various cancers.

<span class="mw-page-title-main">DDIT4L</span>

DNA-damage-inducible transcript 4 like (DDIT4L) or regulated in development and DNA damage response 2 (REDD2) is a protein that in humans is encoded by the DDIT4L gene. The gene is located on chromosome 4 or chromosome 3 in human or mouse respectively.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000168209 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000020108 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Shoshani T, Faerman A, Mett I, Zelin E, Tenne T, Gorodin S, Moshel Y, Elbaz S, Budanov A, Chajut A, Kalinski H, Kamer I, Rozen A, Mor O, Keshet E, Leshkowitz D, Einat P, Skaliter R, Feinstein E (April 2002). "Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis". Molecular and Cellular Biology. 22 (7): 2283–93. doi:10.1128/MCB.22.7.2283-2293.2002. PMC   133671 . PMID   11884613.
  6. "Entrez Gene: DDIT4 DNA-damage-inducible transcript 4".
  7. Sofer A, Lei K, Johannessen CM, Ellisen LW (July 2005). "Regulation of mTOR and cell growth in response to energy stress by REDD1". Molecular and Cellular Biology. 25 (14): 5834–45. doi:10.1128/MCB.25.14.5834-5845.2005. PMC   1168803 . PMID   15988001.
  8. 1 2 Sato T, Nakashima A, Guo L, Coffman K, Tamanoi F (May 2010). "Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer". Oncogene. 29 (18): 2746–52. doi:10.1038/onc.2010.28. PMC   2953941 . PMID   20190810.
  9. DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW (January 2008). "Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling". Genes & Development. 22 (2): 239–51. doi:10.1101/gad.1617608. PMC   2192757 . PMID   18198340.
  10. Inoki K, Li Y, Xu T, Guan KL (August 2003). "Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling". Genes & Development. 17 (15): 1829–34. doi:10.1101/gad.1110003. PMC   196227 . PMID   12869586.
  11. Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD, McKeon F, Haber DA (November 2002). "REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species". Molecular Cell. 10 (5): 995–1005. doi: 10.1016/S1097-2765(02)00706-2 . PMID   12453409.
  12. McGhee NK, Jefferson LS, Kimball SR (May 2009). "Elevated corticosterone associated with food deprivation upregulates expression in rat skeletal muscle of the mTORC1 repressor, REDD1". The Journal of Nutrition. 139 (5): 828–834. doi:10.3945/jn.108.099846. PMC   2714387 . PMID   19297425.
  13. 1 2 Zoncu R, Efeyan A, Sabatini DM (January 2011). "mTOR: from growth signal integration to cancer, diabetes and ageing". Nature Reviews Molecular Cell Biology. 12 (1): 21–35. doi:10.1038/nrm3025. PMC   3390257 . PMID   21157483.
  14. Sarbassov DD, Ali SM, Sabatini DM (December 2005). "Growing roles for the mTOR pathway". Current Opinion in Cell Biology. 17 (6): 596–603. doi:10.1016/j.ceb.2005.09.009. PMID   16226444.
  15. Ben Sahra I, Regazzetti C, Robert G, Laurent K, Le Marchand-Brustel Y, Auberger P, Tanti JF, Giorgetti-Peraldi S, Bost F (July 2011). "Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1". Cancer Research. 71 (13): 4366–72. doi: 10.1158/0008-5472.CAN-10-1769 . PMID   21540236.

Further reading