DIN 41612

Last updated
A NuBus graphics card with a male 3x32 DIN 41612 connector (white, foreground left). Nubus graphics card.jpg
A NuBus graphics card with a male 3×32 DIN 41612 connector (white, foreground left).
VMEbus crate. 3x32 DIN 41612 female connectors can be seen on the green motherboard in back. VMEbus.jpg
VMEbus crate. 3×32 DIN 41612 female connectors can be seen on the green motherboard in back.
A NuBus motherboard, with six female 3x32 DIN 41612 connectors (black, centre left). Apple Macintosh II motherboard.jpg
A NuBus motherboard, with six female 3×32 DIN 41612 connectors (black, centre left).

DIN 41612 was a DIN standard for electrical connectors that are widely used in rack based electrical systems. Standardisation of the connectors is a pre-requisite for open systems, where users expect components from different suppliers to operate together. The most widely known use of DIN 41612 connectors is in the VMEbus and NuBus systems. The standard has withdrawn in favor of international standards IEC 60603-2 and EN 60603-2.

Contents

DIN 41612 connectors are used in Pancon, [1] STEbus, [2] Futurebus, VMEbus, Multibus II, NuBus, Acorn Archimedes expansion bus, [3] VXI Bus, [4] eurocard TRAM motherboards, [5] and Europe Card Bus, all of which typically use male DIN 41612 connectors on Eurocards plugged into female DIN 41612 on the backplane in a 19-inch rack chassis.

Normal and Reversed connectors

To support the plug-in card/backplane configuration, the "normal" versions of these connectors have right-angle PCB mounting pins on the male DIN 41612 connector and straight PCB mounting pins on the female DIN 41612 connector.

There also exist "Reversed" connectors, in which the male DIN 41612 connector has straight mounting pins and the female DIN 41612 connector has right-angle mounting pins.

The pin numbering of the connectors is such that, if you replace a "normal" connector with "Reversed" connector, the row ordering and the pin numbering is unchanged: what was male pin a1 is now female receptacle a1.

The consequence is this: if you design 2 boards to connect edge-to-edge with no backplane, one board would require a "normal" connector (male with right-angle pins) and the other would require a "Reversed" connector (female with right-angle pins). In this arrangement, the row ordering is unchanged but the pin ordering is mirrored: male pin a1 is connected to female receptacle a32.

Failure to appreciate this numbering subtlety led to multiple instances where prototype circuit boards had "mirror imaged" connections to their connectors: an expensive and embarrassing mistake (but at least one in which the circuit designer and the layout engineer could each blame the other).

Mechanical details

The standard describes connectors which may have one, two or three rows of contacts, which are labelled as rows a, b and c. Two row connectors may use rows a+b or rows a+c. The connectors may have 16 or 32 columns, which means that the possible permutations allow 16, 32, 48, 64 or 96 contacts. The rows and columns are on a 0.1 inch (2.54 mm) grid pitch. Insertion and removal force are controlled, and three durability grades are available.

Often the female DIN 41612 connectors have press fit contacts rather than solder pin contacts, to avoid thermal shock to the backplane. [6]

Electrical details

The headline performance of the connectors is a 2 amp per pin current carrying capacity, and 5.00 volt working voltage. Both these figures may need to be de-rated according to safety requirements or environmental conditions.

Performance Classes

The DIN 41612 specification identifies 3 different classes or "levels"; it's more complicated than this, but, essentially: class 1 is good for 500 mating cycles; class 2 is good for 400 mating cycles, and, class 3 is good for 50 mating cycles.

Related Research Articles

<span class="mw-page-title-main">Backplane</span> Group of electrical connectors specifically aligned

A backplane or backplane system is a group of electrical connectors in parallel with each other, so that each pin of each connector is linked to the same relative pin of all the other connectors, forming a computer bus. It is used to connect several printed circuit boards together to make up a complete computer system. Backplanes commonly use a printed circuit board, but wire-wrapped backplanes have also been used in minicomputers and high-reliability applications.

<span class="mw-page-title-main">Eurocard (printed circuit board)</span> Standard for PCBs which may be interconnected in a rack mounted chassis

Eurocard is an IEEE standard format for printed circuit board (PCB) cards that can be plugged together into a standard chassis which, in turn, can be mounted in a 19-inch rack. The chassis consists of a series of slotted card guides on the top and bottom, into which the cards are slid so they stand on end, like books on a shelf. At the spine of each card is one or more connectors which plug into mating connectors on a backplane that closes the rear of the chassis.

<span class="mw-page-title-main">VMEbus</span> Computer bus standard physically based on Eurocard sizes

VMEbus is a computer bus standard physically based on Eurocard sizes.

Futurebus, or IEEE 896, is a computer bus standard, intended to replace all local bus connections in a computer, including the CPU, memory, plug-in cards and even, to some extent, LAN links between machines. The effort started in 1979 and didn't complete until 1987, and then immediately went into a redesign that lasted until 1994. By this point, implementation of a chip-set based on the standard lacked industry leadership. It has seen little real-world use, although custom implementations continue to be designed and used throughout industry.

<span class="mw-page-title-main">Electrical connector</span> Device used to join electrical conductors

Components of an electrical circuit are electrically connected if an electric current can run between them through an electrical conductor. An electrical connector is an electromechanical device used to create an electrical connection between parts of an electrical circuit, or between different electrical circuits, thereby joining them into a larger circuit.

<span class="mw-page-title-main">DC connector</span> Electrical connector for carrying DC power

A DC connector is an electrical connector for supplying direct current (DC) power.

<span class="mw-page-title-main">DIN connector</span> Electrical connector

The DIN connector is an electrical connector that was standardized by the Deutsches Institut für Normung (DIN), the German Institute for Standards, in the mid 1950's, initially with 3 pins for mono, but when stereo connections and gear appeared in late 1950's, versions with 5 pins or more were launched. The male DIN connectors (plugs) feature a 13.2 mm diameter metal shield with a notch that limits the orientation in which plug and socket can mate. The range of DIN connectors, different only in the configuration of the pins, have been standardized as DIN 41524 / IEC/DIN EN 60130-9 ; DIN 45322 ; DIN 45329 / IEC/DIN EN 60130–9 ; and DIN 45326 / IEC/DIN EN 60130-9.

<span class="mw-page-title-main">D-subminiature</span> Type of electrical connector

The D-subminiature or D-sub is a common type of electrical connector. They are named for their characteristic D-shaped metal shield. When they were introduced, D-subs were among the smallest connectors used on computer systems.

<span class="mw-page-title-main">CompactPCI</span> Computer bus interconnect for industrial computers

CompactPCI is a computer bus interconnect for industrial computers, combining a Eurocard-type connector and PCI signaling and protocols. Boards are standardized to 3U or 6U sizes, and are typically interconnected via a passive backplane. The connector pin assignments are standardized by the PICMG US and PICMG Europe organizations. The connectors and the electrical rules allow for eight boards in a PCI segment. Multiple bus segments are allowed with bridges.

<span class="mw-page-title-main">IEC 60309</span> International standard for industrial plugs

IEC 60309 is a series of international standards from the International Electrotechnical Commission (IEC) for "plugs, socket-outlets and couplers for industrial purposes". They are also referred to as "pin & sleeve" connectors in North America or as "CeeForm" connectors in the entertainment industry. The maximum voltage allowed by the standard is 1000 V DC or AC; the maximum current, 800 A; and the maximum frequency, 500 Hz. The ambient temperature range is −25 °C to 40 °C.

<span class="mw-page-title-main">Gender of connectors and fasteners</span> Male components insert into female components

In electrical and mechanical trades and manufacturing, each half of a pair of mating connectors or fasteners is conventionally assigned the designation male or female. The female connector is generally a receptacle that receives and holds the male connector. Alternative terminology such as plug and socket or jack are sometimes used, particularly for electrical connectors.

<span class="mw-page-title-main">Multibus</span> Computer bus standard

Multibus is a computer bus standard used in industrial systems. It was developed by Intel Corporation and was adopted as the IEEE 796 bus.

<span class="mw-page-title-main">STEbus</span> Non-proprietary, processor-independent, computer bus

The STEbus is a non-proprietary, processor-independent, computer bus with 8 data lines and 20 address lines. It was popular for industrial control systems in the late 1980s and early 1990s before the ubiquitous IBM PC dominated this market. STE stands for STandard Eurocard.

<span class="mw-page-title-main">Bayonet mount</span> Fastening mechanism

A bayonet mount or bayonet connector is a fastening mechanism consisting of a cylindrical male side with one or more radial pins, and a female receptor with matching L-shaped slot(s) and with spring(s) to keep the two parts locked together. The slots are shaped like a capital letter L with serif ; the pin slides into the vertical arm of the L, rotates across the horizontal arm, then is pushed slightly upwards into the short vertical "serif" by the spring; the connector is no longer free to rotate unless pushed down against the spring until the pin is out of the "serif".

<span class="mw-page-title-main">Modular connector</span> Electrical connector commonly used in telephone and computer networks

A modular connector is a type of electrical connector for cords and cables of electronic devices and appliances, such as in computer networking, telecommunication equipment, and audio headsets.

<span class="mw-page-title-main">Coaxial power connector</span> Type of electrical power connector

A coaxial power connector is an electrical power connector used for attaching extra-low voltage devices such as consumer electronics to external electricity. Also known as barrel connectors, concentric barrel connectors or tip connectors, these small cylindrical connectors come in an enormous variety of sizes.

<span class="mw-page-title-main">VPX</span> Standards for connecting components of a computer

VPX, also known as VITA 46, is a set of standards for connecting components of a computer, commonly used by defense contractors. Some are ANSI standards such as ANSI/VITA 46.0–2019. VPX provides VMEbus-based systems with support for switched fabrics over a new high speed connector. Defined by the VMEbus International Trade Association (VITA) working group starting in 2003, it was first demonstrated in 2004, and became an ANSI standard in 2007.

<span class="mw-page-title-main">U.S. Military connector specifications</span>

Electrical or fiber-optic connectors used by U.S. Department of Defense were originally developed in the 1930s for severe aeronautical and tactical service applications, and the Type "AN" (Army-Navy) series set the standard for modern military circular connectors. These connectors, and their evolutionary derivatives, are often called Military Standard, "MIL-STD", or (informally) "MIL-SPEC" or sometimes "MS" connectors. They are now used in aerospace, industrial, marine, and even automotive commercial applications.

CompactPCI Serial is an industrial standard for modular computer systems. It is based on the established PICMG 2.0 CompactPCI standard, which uses the parallel PCI bus for communication among a system's card components. In contrast to this, CompactPCI Serial uses only serial point-to-point connections. CompactPCI Serial was officially adopted by the PCI Industrial Computer Manufacturers Group PICMG as PICMG CPCI-S.0 CompactPCI Serial in March 2011. Its mechanical concept is based on the proven standards of IEEE 1101-1-1998 and IEEE 1101-10-1996. CompactPCI Serial includes different connectors that permit very high data rates. The new technology standard succeeding parallel CompactPCI comprises another specification called PICMG 2.30 CompactPCI PlusIO. This is why CompactPCI Serial and CompactPCI PlusIO as a whole were also called CompactPCI Plus. PICMG's first working title of CompactPCI Serial was CPLUS.0. CompactPCI Serial backplanes and chassis are developed by Schroff, Elmа, and Pixus Technologies companies, as for the CompactPCI Serial board level electronics – they are developed by MEN Mikro Elektronik, Fastwel, EKF, Emerson Embedded Computing, ADLINK, and Kontron.

<span class="mw-page-title-main">Europe Card Bus</span>

The Europe Card Bus is a computer bus developed in 1977 by the company Kontron, mainly for the 8-bit Zilog Z80, Intel 8080 and Intel 8085 microprocessor families.

References

  1. DIN 41612
  2. Michael J. Spinks. "Microprocessor System Design: A Practical Introduction". 2013. p. 158.
  3. Acorn Enhanced Expansion Card Specification (formerly Acorn expansion card specification) (PDF) (5 ed.). Acorn Computers Ltd. 1994.
  4. "Eurocard Connectors per DIN 41612 and IEC 60603-2"
  5. "IMS B012 User Guide and Reference Manual". "Appendix A". 1988.
  6. Andrew Fletcher. "Connector Industry: A Profile of the European Connector Industry". p. 67.