DNA-dependent ATPase

Last updated

DNA-dependent ATPase, abbreviated Dda and also known as Dda helicase and Dda DNA helicase, is the 439-amino acid 49,897-atomic mass unit protein coded by the Dda gene of the bacteriophage T4 phage, a virus that infects enterobacteria.

Contents

Biochemistry

Dda is a molecular motor, specifically a helicase that moves in the 5' end to 3' direction along a nucleic acid phosphodiester backbone, separating two annealed nucleic acid strands, using the free energy released by the hydrolysis of adenosine triphosphate. The National Center for Biotechnology Information (NCBI) Reference Sequence accession number is NP_049632.

Molecular Biology

Dda is involved in the initiation of T4 DNA replication and DNA recombination.[ citation needed ]

Genetics

The Dda gene is 31,219 base pair long. The GenBank accession number is AAD4255. The coding strand (see also: sense strand) begins in base number 9,410 and ends in base number 10,729. [1] [2]

Cellular Biology

Dda is toxic to cells at elevated levels.[ citation needed ]

See also

Related Research Articles

Base pair Unit consisting of two nucleobases bound to each other by hydrogen bonds

A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA. Dictated by specific hydrogen bonding patterns, "Watson–Crick" base pairs allow the DNA helix to maintain a regular helical structure that is subtly dependent on its nucleotide sequence. The complementary nature of this based-paired structure provides a redundant copy of the genetic information encoded within each strand of DNA. The regular structure and data redundancy provided by the DNA double helix make DNA well suited to the storage of genetic information, while base-pairing between DNA and incoming nucleotides provides the mechanism through which DNA polymerase replicates DNA and RNA polymerase transcribes DNA into RNA. Many DNA-binding proteins can recognize specific base-pairing patterns that identify particular regulatory regions of genes.

DNA Molecule that carries genetic information

Deoxyribonucleic acid is a molecule composed of two polynucleotide chains that coil around each other to form a double helix carrying genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life.

Nucleic acid Class of large biomolecules essential to all known life

Nucleic acids are the biopolymers, or large biomolecules, essential to all known forms of life. The term nucleic acid is the overall name for DNA and RNA. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. If the sugar is a compound ribose, the polymer is RNA ; if the sugar is derived from ribose as deoxyribose, the polymer is DNA.

RNA Family of large biological molecules

Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and DNA are nucleic acids. Along with lipids, proteins, and carbohydrates, nucleic acids constitute one of the four major macromolecules essential for all known forms of life. Like DNA, RNA is assembled as a chain of nucleotides, but unlike DNA, RNA is found in nature as a single strand folded onto itself, rather than a paired double strand. Cellular organisms use messenger RNA (mRNA) to convey genetic information that directs synthesis of specific proteins. Many viruses encode their genetic information using an RNA genome.

Central dogma of molecular biology Explanation of the flow of genetic information within a biological system

The central dogma of molecular biology is an explanation of the flow of genetic information within a biological system. it is often stated as "DNA makes RNA, and RNA makes protein", although this is not its original meaning. It was first stated by Francis Crick in 1957, then published in 1958:

The Central Dogma. This states that once "information" has passed into protein it cannot get out again. In more detail, the transfer of information from nucleic acid to nucleic acid, or from nucleic acid to protein may be possible, but transfer from protein to protein, or from protein to nucleic acid is impossible. Information means here the precise determination of sequence, either of bases in the nucleic acid or of amino acid residues in the protein.

DNA primase is an enzyme involved in the replication of DNA and is a type of RNA polymerase. Primase catalyzes the synthesis of a short RNA segment called a primer complementary to a ssDNA template. After this elongation, the RNA piece is removed by a 5' to 3' exonuclease and refilled with DNA.

Helicase Class of enzymes to unpack an organisms genes

Helicases are a class of enzymes vital to all organisms. Their main function is to unpack an organism's genes. They are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separating two annealed nucleic acid strands such as DNA and RNA, using energy from ATP hydrolysis. There are many helicases, representing the great variety of processes in which strand separation must be catalyzed. Approximately 1% of eukaryotic genes code for helicases. The human genome codes for 95 non-redundant helicases: 64 RNA helicases and 31 DNA helicases. Many cellular processes, such as DNA replication, transcription, translation, recombination, DNA repair, and ribosome biogenesis involve the separation of nucleic acid strands that necessitates the use of helicases.

Microviridae is a family of bacteriophages with a single-stranded DNA genome. The name of this family is derived from the ancient Greek word μικρός (mikrós), meaning "small". This refers to the size of their genomes, which are among the smallest of the DNA viruses. Enterobacteria, intracellular parasitic bacteria, and spiroplasma serve as natural hosts. There are currently 21 species in this family, divided among six genera and two subfamilies.

Phi X 174 A single-stranded DNA virus that infects bacteria

The phi X 174 bacteriophage is a single-stranded DNA (ssDNA) virus that infects Escherichia coli, and the first DNA-based genome to be sequenced. This work was completed by Fred Sanger and his team in 1977. In 1962, Walter Fiers and Robert Sinsheimer had already demonstrated the physical, covalently closed circularity of ΦX174 DNA. Nobel prize winner Arthur Kornberg used ΦX174 as a model to first prove that DNA synthesized in a test tube by purified enzymes could produce all the features of a natural virus, ushering in the age of synthetic biology. In 1972-1974, Jerard Hurwitz, Sue Wickner, and Reed Wickner with collaborators identified the genes required to produce the enzymes to catalyze conversion of the single stranded form of the virus to the double stranded replicative form. In 2003, it was reported by Craig Venter's group that the genome of ΦX174 was the first to be completely assembled in vitro from synthesized oligonucleotides. The ΦX174 virus particle has also been successfully assembled in vitro. In 2012, it was shown how its highly overlapping genome can be fully decompressed and still remain functional.

T7 DNA helicase (gp4) is a hexameric motor protein encoded by T7 phages that uses energy from dTTP hydrolysis to process unidirectionally along single stranded DNA, separating (helicase) the two strands as it progresses. It is also a primase, making short stretches of RNA that initiates DNA synthesis. It forms a complex with T7 DNA polymerase. Its homologs are found in mitochrondria and chloroplasts.

In molecular biology and genetics, the sense of a nucleic acid molecule, particularly of a strand of DNA or RNA, refers to the nature of the roles of the strand and its complement in specifying a sequence of amino acids. Depending on the context, sense may have slightly different meanings. For example, DNA is positive-sense if an RNA version of the same sequence is translated or translatable into protein, negative-sense if not.

MCM4 protein-coding gene in the species Homo sapiens

DNA replication licensing factor MCM4 is a protein that in humans is encoded by the MCM4 gene.

HMGB2 protein-coding gene in the species Homo sapiens

High-mobility group protein B2 also known as high-mobility group protein 2 (HMG-2) is a protein that in humans is encoded by the HMGB2 gene.

Twinkle (protein) mammalian protein found in Homo sapiens

Twinkle protein also known as twinkle mtDNA helicase is a mitochondrial protein that in humans is encoded by the TWNK gene located in the long arm of chromosome 10 (10q24.31).

TOP3A protein-coding gene in the species Homo sapiens

DNA topoisomerase 3-alpha is an enzyme that in humans is encoded by the TOP3A gene.

RECQL protein-coding gene in the species Homo sapiens

ATP-dependent DNA helicase Q1 is an enzyme that in humans is encoded by the RECQL gene.

DHX36 protein-coding gene in the species Homo sapiens

Probable ATP-dependent RNA helicase DHX36 also known as DEAH box protein 36 (DHX36) or MLE-like protein 1 (MLEL1) or G4 resolvase 1 (G4R1) or RNA helicase associated with AU-rich elements (RHAU) is an enzyme that in humans is encoded by the DHX36 gene.

RECQL5 protein-coding gene in the species Homo sapiens

ATP-dependent DNA helicase Q5 is an enzyme that in humans is encoded by the RECQL5 gene.

DHX16 protein-coding gene in the species Homo sapiens

Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 is an enzyme that in humans is encoded by the DHX16 gene.

PIF1 5-to-3 DNA helicase protein-coding gene in the species Homo sapiens

PIF1 5'-to-3' DNA helicase is a protein that in humans is encoded by the PIF1 gene.

References

  1. "Enterobacteria phage T4, complete genome". 13 August 2018.Cite journal requires |journal= (help)
  2. "Dda - ATP-dependent DNA helicase dda - Enterobacteria phage T4 - dda gene & protein".