DNaM

Last updated
dNaM
DNaM-skeletal.png
Names
IUPAC name
(1R)-1,4-Anhydro-2-deoxy-1-(3-methoxynaphthalen-2-yl)-D-erythro-pentitol
Systematic IUPAC name
(2R,3S,5R)-2-(Hydroxymethyl)-5-(3-methoxynaphthalen-2-yl)oxolan-3-ol
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C16H18O4/c1-19-14-7-11-5-3-2-4-10(11)6-12(14)15-8-13(18)16(9-17)20-15/h2-7,13,15-18H,8-9H2,1H3/t13-,15+,16+/m0/s1
    Key: XVSHFDVHYNHNDU-NUEKZKHPSA-N
  • COc1cc2ccccc2cc1[C@H]3C[C@@H]([C@H](O3)CO)O
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

dNaM is an artificial nucleobase containing a 3-methoxy-2-naphthyl group instead of a natural base.

When it was originally successfully introduced into DNA for replication in an E. coli semi-synthetic organism, it was paired up with d5SICS. For short it is called X whilst the d5SICS being called Y. [1] d5SICS was replaced by dTPT3 in revised versions due to its improved ability to replicate in a wider range of sequence contexts. [2] X pairs with Y using hydrophobic and packing interactions instead of hydrogen bonding, which occurs in natural base pairs. Inside the semi-synthetic organism, methyl directed mismatch repair pathway (MMR) actually fixes unnatural-natural mispairs, whereas recombinational repair actually cuts out the unnatural. [3] The E. coli semi-synthetic organism managed to hold onto the new base for an extended time both while on a plasmid as well as when stored in the chromosome. [4] [5] In free DNA, rings of d5SICS and dNaM are placed in parallel planes instead of the same plane, but when inside of a DNA polymerase, they pair using an edge-to-edge conformation. [6] dNaM and dTPT3 can also template transcription of mRNAs and tRNAs by T7 RNA polymerase that have the ability to produce decode at the E. coli ribosome to produce proteins with unnatural amino acids, expanding the genetic code. [7]

Related Research Articles

<span class="mw-page-title-main">Base pair</span> Unit consisting of two nucleobases bound to each other by hydrogen bonds

A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA. Dictated by specific hydrogen bonding patterns, "Watson–Crick" base pairs allow the DNA helix to maintain a regular helical structure that is subtly dependent on its nucleotide sequence. The complementary nature of this based-paired structure provides a redundant copy of the genetic information encoded within each strand of DNA. The regular structure and data redundancy provided by the DNA double helix make DNA well suited to the storage of genetic information, while base-pairing between DNA and incoming nucleotides provides the mechanism through which DNA polymerase replicates DNA and RNA polymerase transcribes DNA into RNA. Many DNA-binding proteins can recognize specific base-pairing patterns that identify particular regulatory regions of genes.

<span class="mw-page-title-main">Genetic code</span> Rules by which information encoded within genetic material is translated into proteins

The genetic code is the set of rules used by living cells to translate information encoded within genetic material into proteins. Translation is accomplished by the ribosome, which links proteinogenic amino acids in an order specified by messenger RNA (mRNA), using transfer RNA (tRNA) molecules to carry amino acids and to read the mRNA three nucleotides at a time. The genetic code is highly similar among all organisms and can be expressed in a simple table with 64 entries.

<span class="mw-page-title-main">Nucleotide</span> Biological molecules that form the building blocks of nucleic acids

Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver.

<span class="mw-page-title-main">Nucleobase</span> Nitrogen-containing biological compounds that form nucleosides

Nucleobases are nitrogen-containing biological compounds that form nucleosides, which, in turn, are components of nucleotides, with all of these monomers constituting the basic building blocks of nucleic acids. The ability of nucleobases to form base pairs and to stack one upon another leads directly to long-chain helical structures such as ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). Five nucleobases—adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U)—are called primary or canonical. They function as the fundamental units of the genetic code, with the bases A, G, C, and T being found in DNA while A, G, C, and U are found in RNA. Thymine and uracil are distinguished by merely the presence or absence of a methyl group on the fifth carbon (C5) of these heterocyclic six-membered rings. In addition, some viruses have aminoadenine (Z) instead of adenine. It differs in having an extra amine group, creating a more stable bond to thymine.

<span class="mw-page-title-main">DNA polymerase</span> Form of DNA replication

A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex. During this process, DNA polymerase "reads" the existing DNA strands to create two new strands that match the existing ones. These enzymes catalyze the chemical reaction

dnaQ is the gene encoding the ε subunit of DNA polymerase III in Escherichia coli. The ε subunit is one of three core proteins in the DNA polymerase complex. It functions as a 3’→5’ DNA directed proofreading exonuclease that removes incorrectly incorporated bases during replication. dnaQ may also be referred to as mutD.

<span class="mw-page-title-main">Okazaki fragments</span> Transient components of lagging strand of DNA

Okazaki fragments are short sequences of DNA nucleotides which are synthesized discontinuously and later linked together by the enzyme DNA ligase to create the lagging strand during DNA replication. They were discovered in the 1960s by the Japanese molecular biologists Reiji and Tsuneko Okazaki, along with the help of some of their colleagues.

<span class="mw-page-title-main">Synthetic biology</span> Interdisciplinary branch of biology and engineering

Synthetic biology (SynBio) is a multidisciplinary field of science that focuses on living systems and organisms, and it applies engineering principles to develop new biological parts, devices, and systems or to redesign existing systems found in nature.

Xenobiology (XB) is a subfield of synthetic biology, the study of synthesizing and manipulating biological devices and systems. The name "xenobiology" derives from the Greek word xenos, which means "stranger, alien". Xenobiology is a form of biology that is not (yet) familiar to science and is not found in nature. In practice, it describes novel biological systems and biochemistries that differ from the canonical DNA–RNA-20 amino acid system. For example, instead of DNA or RNA, XB explores nucleic acid analogues, termed xeno nucleic acid (XNA) as information carriers. It also focuses on an expanded genetic code and the incorporation of non-proteinogenic amino acids into proteins.

Steven Albert Benner has been a professor at Harvard University, ETH Zurich, and the University of Florida where he was the V.T. & Louise Jackson Distinguished Professor of Chemistry. In 2005, he founded The Westheimer Institute of Science and Technology (TWIST) and the Foundation For Applied Molecular Evolution. Benner has also founded the companies EraGen Biosciences and Firebird BioMolecular Sciences LLC.

Synthetic genomics is a nascent field of synthetic biology that uses aspects of genetic modification on pre-existing life forms, or artificial gene synthesis to create new DNA or entire lifeforms.

<span class="mw-page-title-main">Artificial gene synthesis</span> Group of methods in synthetic biology

Artificial gene synthesis, or simply gene synthesis, refers to a group of methods that are used in synthetic biology to construct and assemble genes from nucleotides de novo. Unlike DNA synthesis in living cells, artificial gene synthesis does not require template DNA, allowing virtually any DNA sequence to be synthesized in the laboratory. It comprises two main steps, the first of which is solid-phase DNA synthesis, sometimes known as DNA printing. This produces oligonucleotide fragments that are generally under 200 base pairs. The second step then involves connecting these oligonucleotide fragments using various DNA assembly methods. Because artificial gene synthesis does not require template DNA, it is theoretically possible to make a completely synthetic DNA molecule with no limits on the nucleotide sequence or size.

<span class="mw-page-title-main">Nucleic acid analogue</span> Compound analogous to naturally occurring RNA and DNA

Nucleic acid analogues are compounds which are analogous to naturally occurring RNA and DNA, used in medicine and in molecular biology research. Nucleic acids are chains of nucleotides, which are composed of three parts: a phosphate backbone, a pentose sugar, either ribose or deoxyribose, and one of four nucleobases. An analogue may have any of these altered. Typically the analogue nucleobases confer, among other things, different base pairing and base stacking properties. Examples include universal bases, which can pair with all four canonical bases, and phosphate-sugar backbone analogues such as PNA, which affect the properties of the chain . Nucleic acid analogues are also called Xeno Nucleic Acid and represent one of the main pillars of xenobiology, the design of new-to-nature forms of life based on alternative biochemistries.

<span class="mw-page-title-main">Expanded genetic code</span> Modified genetic code

An expanded genetic code is an artificially modified genetic code in which one or more specific codons have been re-allocated to encode an amino acid that is not among the 22 common naturally-encoded proteinogenic amino acids.

<span class="mw-page-title-main">History of genetic engineering</span> Aspect of history

Genetic engineering is the science of manipulating genetic material of an organism. The first artificial genetic modification accomplished using biotechnology was transgenesis, the process of transferring genes from one organism to another, first accomplished by Herbert Boyer and Stanley Cohen in 1973. It was the result of a series of advancements in techniques that allowed the direct modification of the genome. Important advances included the discovery of restriction enzymes and DNA ligases, the ability to design plasmids and technologies like polymerase chain reaction and sequencing. Transformation of the DNA into a host organism was accomplished with the invention of biolistics, Agrobacterium-mediated recombination and microinjection. The first genetically modified animal was a mouse created in 1974 by Rudolf Jaenisch. In 1976 the technology was commercialised, with the advent of genetically modified bacteria that produced somatostatin, followed by insulin in 1978. In 1983 an antibiotic resistant gene was inserted into tobacco, leading to the first genetically engineered plant. Advances followed that allowed scientists to manipulate and add genes to a variety of different organisms and induce a range of different effects. Plants were first commercialized with virus resistant tobacco released in China in 1992. The first genetically modified food was the Flavr Savr tomato marketed in 1994. By 2010, 29 countries had planted commercialized biotech crops. In 2000 a paper published in Science introduced golden rice, the first food developed with increased nutrient value.

<span class="mw-page-title-main">Xeno nucleic acid</span>

Xeno nucleic acids (XNA) are synthetic nucleic acid analogues that have a different sugar backbone than the natural nucleic acids DNA and RNA. As of 2011, at least six types of synthetic sugars have been shown to form nucleic acid backbones that can store and retrieve genetic information. Research is now being done to create synthetic polymerases to transform XNA. The study of its production and application has created a field known as xenobiology.

d5SICS Chemical compound

d5SICS is an artificial nucleoside containing 6-methylisoquinoline-1-thione-2-yl group instead of a base.

Floyd E. Romesberg is an American biotechnologist, biochemist, and geneticist formerly at Scripps Research in San Diego, California. He is known for leading the team that created the first Unnatural Base Pair (UBP), thus expanding the genetic alphabet of four letters to six in 2012, the first semi-synthetic organism in 2014, and the first functional semi-synthetic organism that can reproduce its genetic material in successive offspring, in 2017. He left Scripps after a Title IX investigation.

<span class="mw-page-title-main">Hachimoji DNA</span> Synthetic DNA

Hachimoji DNA is a synthetic nucleic acid analog that uses four synthetic nucleotides in addition to the four present in the natural nucleic acids, DNA and RNA. This leads to four allowed base pairs: two unnatural base pairs formed by the synthetic nucleobases in addition to the two normal pairs. Hachimoji bases have been demonstrated in both DNA and RNA analogs, using deoxyribose and ribose respectively as the backbone sugar.

<span class="mw-page-title-main">Philipp Holliger</span> Swiss molecular biologist

Philipp Holliger, Ph.D. is a Swiss molecular biologist best known for his work on xeno nucleic acids (XNAs) and RNA engineering. Holliger is a program leader at the MRC Laboratory of Molecular Biology.

References

  1. Sarah Caplan (29 November 2017). "Cells with DNA made in lab lead to 'Holy Grail' of synthetic biology". The Washington Post.
  2. Zhang, Yorke; Lamb, Brian M.; Feldman, Aaron W.; Zhou, Anne Xiaozhou; Lavergne, Thomas; Li, Lingjun; Romesberg, Floyd E. (2017-01-23). "A semisynthetic organism engineered for the stable expansion of the genetic alphabet". Proceedings of the National Academy of Sciences. 114 (6): 1317–1322. doi: 10.1073/pnas.1616443114 . ISSN   0027-8424. PMC   5307467 . PMID   28115716.
  3. Ledbetter, Michael P.; Karadeema, Rebekah J.; Romesberg, Floyd E. (2018-01-17). "Reprograming the Replisome of a Semisynthetic Organism for the Expansion of the Genetic Alphabet". Journal of the American Chemical Society. 140 (2): 758–765. doi:10.1021/jacs.7b11488. ISSN   0002-7863. PMC   5793209 . PMID   29309130.
  4. "Bacterium survives unnatural DNA transplant". Rsc.org. Retrieved July 29, 2015.
  5. Malyshev, Denis A.; Dhami, Kirandeep; Quach, Henry T.; Lavergne, Thomas; Ordoukhanian, Phillip; Torkamani, Ali; Romesberg, Floyd E. (2012). "Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet". Proceedings of the National Academy of Sciences. 109 (30): 12005–12010. Bibcode:2012PNAS..10912005M. doi: 10.1073/pnas.1205176109 . PMC   3409741 . PMID   22773812. S2CID   26653524.
  6. Betz, Karin; et al. (2013). "Structural Insights into DNA Replication Without Hydrogen-Bonds". J Am Chem Soc. 135 (49): 18637–43. doi:10.1021/ja409609j. PMC   3982147 . PMID   24283923.
  7. Zhang, Yorke; Ptacin, Jerod L.; Fischer, Emil C.; Aerni, Hans R.; Caffaro, Carolina E.; San Jose, Kristine; Feldman, Aaron W.; Turner, Court R.; Romesberg, Floyd E. (November 2017). "A semi-synthetic organism that stores and retrieves increased genetic information". Nature. 551 (7682): 644–647. doi:10.1038/nature24659. ISSN   1476-4687. PMC   5796663 . PMID   29189780.