DPHM-RS

Last updated

DPHM-RS (Semi-Distributed Physically based Hydrologic Model using Remote Sensing and GIS) is a semi-distributed hydrologic model developed at University of Alberta, Canada.

Contents

Model description

The semi-distributed DPHM-RS (Semi-Distributed Physically based Hydrologic Model using Remote Sensing and GIS) sub-divides a river basin to a number of sub-basins, computes the evapotranspiration, soil moisture and surface runoff using energy and rainfall forcing data in a sub-basin scale. It consists of six basic components: interception of rainfall, evapotranspiration, soil moisture, saturated subsurface flow, surface flow and channel routing, as described in Biftu and Gan. [1] [2]

The interception of precipitation from the atmosphere by the canopy is modeled using the Rutter Interception Model. [3] The land surface evaporation and vegetation transpiration are computed separately using the Two Source Model of Shuttleworth and Gurney, [4] which is based on the energy balance above canopy, within canopy and at soil surface. This model solves the non-linear equations based on the energy balance for the canopy, surface, and air temperatures at canopy height, evaporation from soil surface and transpiration from vegetation. A soil profile of three homogeneous layers (active, transmission and saturated layers) is used to model the soil moisture on the basis of water balance between layers. The active layer is 15–30 cm thick and it simulates the rapid changes of soil moisture content under high frequency atmospheric forcing. The transmission zone lies between the base of the active layer and the top of the capillary fringe and so it more characterizes the seasonal (instead of transient) changes of soil moisture. In modeling the unsaturated flow component of soil water, the water transport is assumed vertical and non-interactive between sub-basins. The lower boundary of the unsaturated zone is the top of capillary fringe controlled by the local average ground water table derived from the catchment average water table and topographic soil index which include the spatial variability of the topographic and soil parameters. [5] Starting with an observed value from the surrounding wells of the modeled basin, the temporal changes in the average ground water depth is based on the water balance analysis for the whole catchment, and the rate of change of the average ground water table is assumed to be the rate of change of local water table. [6]

After simulating the soil moisture, the saturation and Hortonian infiltration excess for vegetated and bare soil are computed to generate the surface runoff for each sub-basin. Philip's equation is used to compute the infiltration capacity of soil, and the surface runoff is distributed temporally using a time lag response function obtained from a reference rainfall excess of 1 cm depth applied to each grid cell within the sub-basin for one time step. Then for each grid cell, which has the resolution of the digital elevation model (DEM) used, the flow is routed according to the kinematic wave equation from cell to cell based on eight possible flow directions until the total runoff water for the sub-basin is completely routed. The resulting runoff becomes a lateral inflow to the stream channel within the sub-basin and these flows are routed through the drainage network by the Muskingum-Cunge routing method whose variable parameters are evaluated by an iterative four point approach. [7]

See also

Related Research Articles

Hydrology Science of the movement, distribution, and quality of water on Earth and other planets

Hydrology is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and environmental watershed sustainability. A practitioner of hydrology is called a hydrologist. Hydrologists are scientists studying earth or environmental science, civil or environmental engineering, and physical geography. Using various analytical methods and scientific techniques, they collect and analyze data to help solve water related problems such as environmental preservation, natural disasters, and water management.

Evapotranspiration

Evapotranspiration (ET) is the sum of water evaporation and transpiration from a surface area to the atmosphere. Evaporation accounts for the movement of water to the air from sources such as the soil, canopy interception, and water bodies. Transpiration accounts for the movement of water within a plant and the subsequent exit of water as vapor through stomata in its leaves in vascular plants and phyllids in non-vascular plants. A plant that contributes to evapotranspiration is called an evapotranspirator. Evapotranspiration is an important part of the water cycle.

Surface-water hydrology is the sub-field of hydrology concerned with above-earth water, in contrast to groundwater hydrology that deals with water below the surface of the Earth. Its applications include rainfall and runoff, the routes that surface water takes, and the occurrence of floods and droughts. Surface-water hydrology is used to predict the effects of water constructions such as dams and canals. It considers the layout of the watershed, geology, soils, vegetation, nutrients, energy and wildlife. Modelled aspects include precipitation, the interception of rain water by vegetation or artificial structures, evaporation, the runoff function and the soil-surface system itself.

Hydrogeology Study of the distribution and movement of groundwater

Hydrogeology is the area of geology that deals with the distribution and movement of groundwater in the soil and rocks of the Earth's crust. The terms groundwater hydrology, geohydrology, and hydrogeology are often used interchangeably.

Ecohydrology is an interdisciplinary scientific field studying the interactions between water and ecological systems. It is considered a sub discipline of hydrology, with an ecological focus. These interactions may take place within water bodies, such as rivers and lakes, or on land, in forests, deserts, and other terrestrial ecosystems. Areas of research in ecohydrology include transpiration and plant water use, adaption of organisms to their water environment, influence of vegetation and benthic plants on stream flow and function, and feedbacks between ecological processes and the hydrological cycle.

Infiltration (hydrology)

Infiltration is the process by which water on the ground surface enters the soil. It is commonly used in both hydrology and soil sciences. The infiltration capacity is defined as the maximum rate of infiltration. It is most often measured in meters per day but can also be measured in other units of distance over time if necessary. The infiltration capacity decreases as the soil moisture content of soils surface layers increases. If the precipitation rate exceeds the infiltration rate, runoff will usually occur unless there is some physical barrier.

The United States Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) is a dynamic rainfall–runoff–subsurface runoff simulation model used for single-event to long-term (continuous) simulation of the surface/subsurface hydrology quantity and quality from primarily urban/suburban areas. It can simulate the Rainfall- runoff, runoff, evaporation, infiltration and groundwater connection for roots, streets, grassed areas, rain gardens and ditches and pipes, for example. The hydrology component of SWMM operates on a collection of subcatchment areas divided into impervious and pervious areas with and without depression storage to predict runoff and pollutant loads from precipitation, evaporation and infiltration losses from each of the subcatchment. Besides, low impact development (LID) and best management practice areas on the subcatchment can be modeled to reduce the impervious and pervious runoff. The routing or hydraulics section of SWMM transports this water and possible associated water quality constituents through a system of closed pipes, open channels, storage/treatment devices, ponds, storages, pumps, orifices, weirs, outlets, outfalls and other regulators.

Water balance Looks at how water moves in a closed system

The law of water balance states that the inflows to any water system or area is equal to its outflows plus change in storage during a time interval. In hydrology, a water balance equation can be used to describe the flow of water in and out of a system. A system can be one of several hydrological or water domains, such as a column of soil, a drainage basin, an irrigation area or a city. Water balance can also refer to the ways in which an organism maintains water in dry or hot conditions. It is often discussed in reference to plants or arthropods, which have a variety of water retention mechanisms, including a lipid waxy coating that has limited permeability.

Hydrological transport model

An hydrological transport model is a mathematical model used to simulate the flow of rivers, streams, groundwater movement or drainage front displacement, and calculate water quality parameters. These models generally came into use in the 1960s and 1970s when demand for numerical forecasting of water quality and drainage was driven by environmental legislation, and at a similar time widespread access to significant computer power became available. Much of the original model development took place in the United States and United Kingdom, but today these models are refined and used worldwide.

Groundwater recharge Groundwater that recharges an aquifer

Groundwater recharge or deep drainage or deep percolation is a hydrologic process, where water moves downward from surface water to groundwater. Recharge is the primary method through which water enters an aquifer. This process usually occurs in the vadose zone below plant roots and, is often expressed as a flux to the water table surface. Groundwater recharge also encompasses water moving away from the water table farther into the saturated zone. Recharge occurs both naturally and through anthropogenic processes, where rainwater and or reclaimed water is routed to the subsurface.

Subsurface flow, in hydrology, is the flow of water beneath earth's surface as part of the water cycle.

Geographic information systems (GISs) have become a useful and important tool in the field of hydrology to study and manage Earth's water resources. Climate change and greater demands on water resources require a more knowledgeable disposition of arguably one of our most vital resources. Because water in its occurrence varies spatially and temporally throughout the hydrologic cycle, its study using GIS is especially practical. Whereas previous GIS systems were mostly static in their geospatial representation of hydrologic features, GIS platforms are becoming increasingly dynamic, narrowing the gap between historical data and current hydrologic reality.

Groundwater models are computer models of groundwater flow systems, and are used by hydrogeologists. Groundwater models are used to simulate and predict aquifer conditions.

In hydrogeology, groundwater flow is defined as the "part of streamflow that has infiltrated the ground, entered the phreatic zone, and has been discharged into a stream channel or springs; and seepage water." It is governed by the groundwater flow equation. Groundwater is water that is found underground in cracks and spaces in the soil, sand and rocks. Where water has filled these spaces is the phreatic saturated zone. Groundwater is stored in and moves slowly through layers or zones of soil, sand and rocks: aquifers. The rate of groundwater flow depends on the permeability and the hydraulic head.

Runoff model (reservoir)

A runoff model is a mathematical model describing the rainfallrunoff relations of a rainfall catchment area, drainage basin or watershed. More precisely, it produces a surface runoff hydrograph in response to a rainfall event, represented by and input as a hyetograph. In other words, the model calculates the conversion of rainfall into runoff.
A well known runoff model is the linear reservoir, but in practice it has limited applicability.
The runoff model with a non-linear reservoir is more universally applicable, but still it holds only for catchments whose surface area is limited by the condition that the rainfall can be considered more or less uniformly distributed over the area. The maximum size of the watershed then depends on the rainfall characteristics of the region. When the study area is too large, it can be divided into sub-catchments and the various runoff hydrographs may be combined using flood routing techniques.

GSSHA is a two-dimensional, physically based watershed model developed by the Engineer Research and Development Center of the United States Army Corps of Engineers. It simulates surface water and groundwater hydrology, erosion and sediment transport. The GSSHA model is used for hydraulic engineering and research, and is on the Federal Emergency Management Agency (FEMA) list of hydrologic models accepted for use in the national flood insurance program for flood hydrograph estimation. Input is best prepared by the Watershed Modeling System interface, which effectively links the model with geographic information systems (GIS).

The following outline is provided as an overview of and topical guide to hydrology:

Catchment hydrology

Catchment hydrology is the study of hydrology in drainage basins. Catchments are areas of land where runoff collects to a specific zone. This movement is caused by water moving from areas of high energy to low energy due to the influence of gravity. Catchments often do not last for long periods of time as the water evaporates, drains into the soil, or is consumed by animals.

Vflo

Vflo is a commercially available, physics-based distributed hydrologic model generated by Vieux & Associates, Inc. Vflo uses radar rainfall data for hydrologic input to simulate distributed runoff. Vflo employs GIS maps for parameterization via a desktop interface. The model is suited for distributed hydrologic forecasting in post-analysis and in continuous operations. Vflo output is in the form of hydrographs at selected drainage network grids, as well as distributed runoff maps covering the watershed. Model applications include civil infrastructure operations and maintenance, stormwater prediction and emergency management, continuous and short-term surface water runoff, recharge estimation, soil moisture monitoring, land use planning, water quality monitoring, and water resources management.

The global freshwater model WaterGAP calculates flows and storages of water on all continents of the globe, taking into account the human influence on the natural freshwater system by water abstractions and dams. It supports understanding the freshwater situation across the world’s river basins during the 20th and the 21st century, and is applied to assess water scarcity, droughts and floods and to quantify the impact of human actions on freshwater. Modelling results of WaterGAP have contributed to international assessment of the global environmental situation including the UN World Water Development Reports, the Millennium Ecosystem Assessment, the UN Global Environmental Outlooks as well as to reports of the Intergovernmental Panel on Climate Change. They were included in the 2012 Environmental Performance Index which ranks countries according to their environmental performance.

References

  1. Biftu, G.F., and Gan, T.Y., 2001. Semi-distributed, physically based, hydrologic modeling of the Paddle River Basin, Alberta, using remotely sensed data. Journal of Hydrology 244, 137-156.
  2. Biftu, G. F., and T.Y. Gan, 2004. Semi-distributed, Hydrologic Modeling of Dry Catchment with Remotely Sensed and Digital Terrain Elevation Data. International Journal of Remote Sensing 25(20), 4351-4379.
  3. Rutter, A.J., Morton, A.J., and Robins, P.C., 1975. A predictive model of rain interception in forests, 1.Generalization of the model and comparison with observation in some coniferous and hardwood stands. Journal of Applied Ecology 12, 364-380.
  4. Shuttleworth, J.W., and Gurney, R.J., 1990. The theoretical relationship between foliage temperature and canopy resistance in sparse crop. Quarterly Journal of the Royal Meteorology Society 116, 497-519.
  5. Sivapalan, M., Wood, E.F., and Beven, K.J., 1987. On hydrologic similarity, 2 a scaled model of storm runoff prediction. Water Resources Research 23(12), 2266-2278
  6. Famiglietti, J.S., and Wood, E.F., 1994. Multi-scale modeling of spatially-variable water and energy balance process. Water Resources Research 30(11), 3061-3078.
  7. Ponce, V.M., and Yevjevich, V., 1978. Muskingum-Cunge method for variable parameters. Proc. ASCE 104(HY12).