DRACO

Last updated

DRACO ( double-stranded RNA activated caspase oligomerizer ) is a group of experimental antiviral drugs formerly under development at the Massachusetts Institute of Technology. In cell culture, DRACO was reported to have broad-spectrum efficacy against many infectious viruses, including dengue flavivirus, Amapari and Tacaribe arenavirus, Guama bunyavirus, H1N1 influenza and rhinovirus, and was additionally found effective against influenza in vivo in weanling mice. [1] It was reported to induce rapid apoptosis selectively in virus-infected mammalian cells, while leaving uninfected cells unharmed. [1]

Contents

As of January 2014, work had moved to Draper Laboratory for further testing and development; "the team looks forward to larger scale animal trials and clinical human trials within a decade or less". [2] Dr. Todd Rider presented at the SENS Foundation's SENS6 conference. [3] He left the Draper Laboratory in May 2015 and started a crowdfunding campaign at Indiegogo to raise funds to test the drugs against the herpesvirus and retrovirus families. [4] In total it was predicted that $500,000 per year for 4 years would be needed to optimise and demonstrate DRACOs against clinically relevant viruses, [5] however, two crowdfunding campaigns for $90,000 both failed to reach their target in 2016.

In 2015, an independent research group reported to have successfully observed antiviral activity against the porcine reproductive and respiratory syndrome virus (PRRSV) using DRACOs in vitro. [6]

As of December 2015, research related to DRACOs had ground to a halt due to a lack of funding. [7]

In July 2020, a paper from another independent research group about the effects of DRACO in vitro was published. According to the study, DRACO was nontoxic in uninfected mammalian cells, and cells infected with H1N1 influenza virus showed a "significant", dose-dependent level of apoptosis. [8]

In August 2020 a company called Kimer Med in New Zealand started developing VTose, a derivative of DRACO. [9]

In June 2023 Kimer Med reported that it had "achieved two 100% positive results in tests against the priority viruses Dengue (DENV-2) and Zika (ZIKV). The tests were carried out by an independent laboratory in the United States, where Kimer Med’s antiviral compound, VTose, demonstrated 100% effectiveness against both Dengue and Zika virus in viral cytopathic effect (CPE) reduction assays, with low toxicity."

The same article reported that Kimer Med’s antiviral VTose compounds have now shown efficacy against a total of seven different viruses.

In March 2024 Kimer Med announced it has signed a contract valued at up to USD$750,000 (NZD$1.3 million) with Battelle Memorial Institute (Battelle), the world’s largest independent, nonprofit research and development organisation. The contract is focused on the discovery and development of new antiviral drug candidates for the treatment of alphaviruses.

The same article reported that since it launched in 2020, "Kimer Med has since developed innovative antivirals that have shown efficacy against 11 different viruses, including Dengue (all four types), Zika virus, and Herpes Simplex-2 (HSV-2)."

Introduction

There are very few therapies or prophylactics for serious viruses, but for the ones that do exist, they can be divided into 3 categories:

  1. Special inhibitors of a virus-associated target (e.g. HIV protease inhibitors, RNAi) [1]
  2. Vaccines, but vaccines require modification for each new virus or viral strain.
  3. Interferons, but they are less virus specific and are only receptive to certain viruses.

So in order to overcome these obstacles the antiviral DRACO was developed.

Mechanism

DRACO is selective for virus-infected cells. Differentiation between infected and healthy cells is made primarily via the length and type of RNA transcription helices present within the cell. Most viruses produce long dsRNA helices during transcription and replication. In contrast, uninfected mammalian cells generally produce dsRNA helices of fewer than 24 base pairs during transcription. Cell death is effected via one of the last steps in the apoptosis pathway in which complexes containing intracellular apoptosis signalling molecules simultaneously bind multiple procaspases. The procaspases transactivate via cleavage, activate additional caspases in the cascade, and cleave a variety of cellular proteins, thereby killing the cell. [1]

It has been shown that DRACOs are nontoxic in 11 mammalian cells types and effective against 15 different viruses. [1]

Related Research Articles

<span class="mw-page-title-main">Antiviral drug</span> Medication used to treat a viral infection

Antiviral drugs are a class of medication used for treating viral infections. Most antivirals target specific viruses, while a broad-spectrum antiviral is effective against a wide range of viruses. Antiviral drugs are a class of antimicrobials, a larger group which also includes antibiotic, antifungal and antiparasitic drugs, or antiviral drugs based on monoclonal antibodies. Most antivirals are considered relatively harmless to the host, and therefore can be used to treat infections. They should be distinguished from virucides, which are not medication but deactivate or destroy virus particles, either inside or outside the body. Natural virucides are produced by some plants such as eucalyptus and Australian tea trees.

<i>Wolbachia</i> Genus of bacteria in the Alphaproteobacteria class

Wolbachia is a genus of gram-negative bacteria that can either infect many species of arthropod as an intracellular parasite, or act as a mutualistic microbe in filarial nematodes. It is one of the most common parasitic microbes of arthropods, and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex. Some host species cannot reproduce, or even survive, without Wolbachia colonisation. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70% of all insect species are estimated to be potential hosts.

<i>Dengue virus</i> Species of virus

Dengue virus (DENV) is the cause of dengue fever. It is a mosquito-borne, single positive-stranded RNA virus of the family Flaviviridae; genus Flavivirus. Four serotypes of the virus have been found, and a reported fifth has yet to be confirmed, all of which can cause the full spectrum of disease. Nevertheless, scientists' understanding of dengue virus may be simplistic as, rather than distinct antigenic groups, a continuum appears to exist. This same study identified 47 strains of dengue virus. Additionally, coinfection with and lack of rapid tests for Zika virus and chikungunya complicate matters in real-world infections.

Viral pathogenesis is the study of the process and mechanisms by which viruses cause diseases in their target hosts, often at the cellular or molecular level. It is a specialized field of study in virology.

<span class="mw-page-title-main">Death effector domain</span> InterPro Domain

The death-effector domain (DED) is a protein interaction domain found only in eukaryotes that regulates a variety of cellular signalling pathways. The DED domain is found in inactive procaspases and proteins that regulate caspase activation in the apoptosis cascade such as FAS-associating death domain-containing protein (FADD). FADD recruits procaspase 8 and procaspase 10 into a death induced signaling complex (DISC). This recruitment is mediated by a homotypic interaction between the procaspase DED and a second DED that is death effector domain in an adaptor protein that is directly associated with activated TNF receptors. Complex formation allows proteolytic activation of procaspase into the active caspase form which results in the initiation of apoptosis. Structurally the DED domain are a subclass of protein motif known as the death fold and contains 6 alpha helices, that closely resemble the structure of the Death domain (DD).

<span class="mw-page-title-main">Innate immune system</span> Immunity strategy in living beings

The innate immune system or nonspecific immune system is one of the two main immunity strategies in vertebrates. The innate immune system is an alternate defense strategy and is the dominant immune system response found in plants, fungi, prokaryotes, and invertebrates.

<span class="mw-page-title-main">Apoptosome</span> A protein complex involved in the cellular apoptotic process.

The apoptosome is a large quaternary protein structure formed in the process of apoptosis. Its formation is triggered by the release of cytochrome c from the mitochondria in response to an internal (intrinsic) or external (extrinsic) cell death stimulus. Stimuli can vary from DNA damage and viral infection to developmental cues such as those leading to the degradation of a tadpole's tail.

<span class="mw-page-title-main">Umifenovir</span> Chemical compound

Umifenovir, sold under the brand name Arbidol, is an antiviral medication for the treatment of influenza and COVID infections used in Russia and China. The drug is manufactured by Pharmstandard. It is not approved by the U.S. Food and Drug Administration (FDA) for the treatment or prevention of influenza.

<span class="mw-page-title-main">FADD</span> Human protein and coding gene

FAS-associated death domain protein, also called MORT1, is encoded by the FADD gene on the 11q13.3 region of chromosome 11 in humans.

Bavituximab (PGN401) is a human-mouse chimeric monoclonal antibody against phosphatidylserine, which is a component of cell membranes that is exposed when a cell is transformed into solid tumor cancer cell or dies, and when cells are infected with hepatitis C. The process of cell death is highly controlled and so there usually no immune response to phosphatidylserine but when bavituximab binds to it, the conjugate appears to stimulate an immune response in humans.

<span class="mw-page-title-main">Nitazoxanide</span> Broad-spectrum antiparasitic and antiviral medication

Nitazoxanide, sold under the brand name Alinia among others, is a broad-spectrum antiparasitic and broad-spectrum antiviral medication that is used in medicine for the treatment of various helminthic, protozoal, and viral infections. It is indicated for the treatment of infection by Cryptosporidium parvum and Giardia lamblia in immunocompetent individuals and has been repurposed for the treatment of influenza. Nitazoxanide has also been shown to have in vitro antiparasitic activity and clinical treatment efficacy for infections caused by other protozoa and helminths; evidence as of 2014 suggested that it possesses efficacy in treating a number of viral infections as well.

<span class="mw-page-title-main">Double-stranded RNA viruses</span> Type of virus according to Baltimore classification

Double-stranded RNA viruses are a polyphyletic group of viruses that have double-stranded genomes made of ribonucleic acid. The double-stranded genome is used as a template by the viral RNA-dependent RNA polymerase (RdRp) to transcribe a positive-strand RNA functioning as messenger RNA (mRNA) for the host cell's ribosomes, which translate it into viral proteins. The positive-strand RNA can also be replicated by the RdRp to create a new double-stranded viral genome.

<span class="mw-page-title-main">Introduction to viruses</span> Non-technical introduction to viruses

A virus is a tiny infectious agent that reproduces inside the cells of living hosts. When infected, the host cell is forced to rapidly produce thousands of identical copies of the original virus. Unlike most living things, viruses do not have cells that divide; new viruses assemble in the infected host cell. But unlike simpler infectious agents like prions, they contain genes, which allow them to mutate and evolve. Over 4,800 species of viruses have been described in detail out of the millions in the environment. Their origin is unclear: some may have evolved from plasmids—pieces of DNA that can move between cells—while others may have evolved from bacteria.

<span class="mw-page-title-main">Mitochondrial antiviral-signaling protein</span> Protein-coding gene in the species Homo sapiens

Mitochondrial antiviral-signaling protein (MAVS) is a protein that is essential for antiviral innate immunity. MAVS is located in the outer membrane of the mitochondria, peroxisomes, and mitochondrial-associated endoplasmic reticulum membrane (MAM). Upon viral infection, a group of cytosolic proteins will detect the presence of the virus and bind to MAVS, thereby activating MAVS. The activation of MAVS leads the virally infected cell to secrete cytokines. This induces an immune response which kills the host's virally infected cells, resulting in clearance of the virus.

<span class="mw-page-title-main">Viral neuraminidase</span> InterPro Family

Viral neuraminidase is a type of neuraminidase found on the surface of influenza viruses that enables the virus to be released from the host cell. Neuraminidases are enzymes that cleave sialic acid groups from glycoproteins. Viral neuraminidase was discovered by Alfred Gottschalk at the Walter and Eliza Hall Institute in 1957. Neuraminidase inhibitors are antiviral agents that inhibit influenza viral neuraminidase activity and are of major importance in the control of influenza.

<span class="mw-page-title-main">Mosquito-borne disease</span> Diseases caused by bacteria, viruses or parasites transmitted by mosquitoes

Mosquito-borne diseases or mosquito-borne illnesses are diseases caused by bacteria, viruses or parasites transmitted by mosquitoes. Nearly 700 million people get a mosquito-borne illness each year, resulting in over tens million deaths. The devastation is almost equivalent to the entire 3 year COVID-19 global pandemic.

RIG-I-like receptors are a type of intracellular pattern recognition receptor involved in the recognition of viruses by the innate immune system. RIG-I is the best characterized receptor within the RIG-I like receptor (RLR) family. Together with MDA5 and LGP2, this family of cytoplasmic pattern recognition receptors (PRRs) are sentinels for intracellular viral RNA that is a product of viral infection. The RLR receptors provide frontline defence against viral infections in most tissues.

<span class="mw-page-title-main">Favipiravir</span> Experimental antiviral drug with potential activity against RNA viruses

Favipiravir, sold under the brand name Avigan among others, is an antiviral medication used to treat influenza in Japan. It is also being studied to treat a number of other viral infections, including SARS-CoV-2. Like the experimental antiviral drugs T-1105 and T-1106, it is a pyrazinecarboxamide derivative.

<span class="mw-page-title-main">Galidesivir</span> Antiviral drug

Galidesivir is an antiviral drug, an adenosine analog. It was developed by BioCryst Pharmaceuticals with funding from NIAID, originally intended as a treatment for hepatitis C, but subsequently developed as a potential treatment for deadly filovirus infections such as Ebola virus disease and Marburg virus disease, as well as Zika virus. Currently, galidesivir is under phase 1 human trial in Brazil for coronavirus.

HSV epigenetics is the epigenetic modification of herpes simplex virus (HSV) genetic code.

References

  1. 1 2 3 4 5 Rider TH, Zook CE, Boettcher TL, Wick ST, Pancoast JS, Zusman BD (2011). "Broad-spectrum antiviral therapeutics". PLoS ONE . 6 (7): e22572. Bibcode:2011PLoSO...622572R. doi: 10.1371/journal.pone.0022572 . PMC   3144912 . PMID   21818340.
  2. "Todd Rider Joins Draper to Continue Antiviral Therapeutics Development" (Press release). Cambridge, MA. PRWeb. January 8, 2014. Retrieved April 8, 2014.
  3. "PANACEA broad-spectrum antiviral therapeutics". SENS6 Proceedings. Retrieved 2014-04-11.
  4. "Dr. Todd Rider from MIT Announces IndieGoGo Campaign to Raise Funds to Test and Optimize DRACOs Against Clinically Relevant Viruses". PRWeb. Retrieved 2015-10-26.
  5. "DRACO May Be A Cure For All Viral Infections". Indiegogo. Retrieved 2019-10-31.
  6. Guo C, Chen L, Mo D, Chen Y, Liu X (March 15, 2015). "DRACO inhibits porcine reproductive and respiratory syndrome virus replication in vitro". Arch. Virol. 160 (5). State Key Laboratory of Biocontrol, Guangzhou Higher Education Mega Center, School of Life Sciences, Sun Yat-sen University, North Third Road, Guangzhou, 510006, Guangdong, People's Republic of China: 1239–47. doi:10.1007/s00705-015-2392-4. PMID   25772577. S2CID   16178322.{{cite journal}}: CS1 maint: location (link)
  7. "This man's potentially huge medical breakthrough can't get funding, so he's trying something desperate". Tech Insider. December 15, 2015.
  8. Sharti M, Esmaeili Gouvarchin Ghaleh H, Dorostkar R, Jalali Kondori B (July 28, 2020). "Double-Stranded RNA Activated Caspase Oligomerizer (DRACO): Design, Subcloning, and Antiviral Investigation". Journal of Applied Biotechnology Reports. 8 (Articles in Press). Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. doi:10.30491/jabr.2020.111083.
  9. "Our Work". Kimer Med. Retrieved 2021-01-30.