Dalitz plot

Last updated
Dalitz plot for a three-body decay of a spin-0 particle of the mass
M
{\displaystyle M}
into three spin-0 particles of masses
m
1
{\displaystyle m_{1}}
,
m
2
{\displaystyle m_{2}}
,
m
3
{\displaystyle m_{3}}
. The grey area depicts the allowed kinematic region. The blue line shows a possible position of accumulation of events in case a spin-0 resonance is present as an intermediate state in this three-body decay, which then decays to particles 1 and 2. The orange line shows the position of accumulation of events in case another spin-0 resonance is present, decaying to particles 1 and 3. Dalitz plot.svg
Dalitz plot for a three-body decay of a spin-0 particle of the mass into three spin-0 particles of masses , , . The grey area depicts the allowed kinematic region. The blue line shows a possible position of accumulation of events in case a spin-0 resonance is present as an intermediate state in this three-body decay, which then decays to particles 1 and 2. The orange line shows the position of accumulation of events in case another spin-0 resonance is present, decaying to particles 1 and 3.
Dalitz plot for the decay
D
+
-
K
+
K
-
p
+
{\displaystyle D^{+}\to K^{+}K^{-}\pi ^{+}}
in data of the LHCb experiment at CERN. Clear resonances
K
*
0
{\displaystyle K^{*0}}
(vertical region of enhancement) and
ph
{\displaystyle \phi }
(horizontal enhancement) can be seen. Distribution of events around resonant regions is not uniform due to spin 1 of the resonances, and interference between the resonant and non-resonant processes. Dalitz plot of D meson decay to two kaons and a pion.png
Dalitz plot for the decay in data of the LHCb experiment at CERN. Clear resonances (vertical region of enhancement) and (horizontal enhancement) can be seen. Distribution of events around resonant regions is not uniform due to spin 1 of the resonances, and interference between the resonant and non-resonant processes.

The Dalitz plot is a two-dimensional plot often used in particle physics to represent the relative frequency of various (kinematically distinct) manners in which the products of certain (otherwise similar) three-body decays may move apart. [2] [3]

Contents

The phase-space of a decay of a pseudoscalar into three spin-0 particles can be completely described using two variables. In a traditional Dalitz plot, the axes of the plot are the squares of the invariant masses of two pairs of the decay products. (For example, if particle A decays to particles 1, 2, and 3, a Dalitz plot for this decay could plot m212 on the x-axis and m223 on the y-axis.) If there are no angular correlations between the decay products then the distribution of these variables is flat. However symmetries may impose certain restrictions on the distribution. Furthermore, three-body decays are often dominated by resonant processes, in which the particle decays into two decay products, with one of those decay products immediately decaying into two additional decay products. In this case, the Dalitz plot will show a non-uniform distribution, with a peak around the mass of the resonant decay. In this way, the Dalitz plot provides an excellent tool for studying the dynamics of three-body decays.

Dalitz plots play a central role in the discovery of new particles in current high-energy physics experiments, including Higgs boson research, [4] and are tools in exploratory efforts that might open avenues beyond the Standard Model. [5]

R.H. Dalitz introduced this technique in 1953 [2] [3] to study decays of K mesons (which at that time were still referred to as "tau-mesons" [6] ). It can be adapted to the analysis of four-body decays as well. [7] A specific form of a four-particle Dalitz plot (for non-relativistic kinematics), which is based on a tetrahedral coordinate system, was first applied to study the few-body dynamics in atomic four-body fragmentation processes.

Square Dalitz plot

Modeling of the common representation of the Dalitz plot can be complicated due to its nontrivial shape. One can however introduce such kinematic variables so that Dalitz plot gets a rectangular (or squared) shape: [8]

;

;

where   is the invariant mass of particles 1 and 2 in a given decay event; and   are its maximal and minimal kinematically allowed values, while   is the angle between particles 1 and 3 in the rest frame of particles 1 and 2. This technique is commonly called "Square Dalitz plot" (SDP).


Related Research Articles

<span class="mw-page-title-main">Muon</span> Subatomic particle

A muon is an elementary particle similar to the electron, with an electric charge of −1 e and a spin of 12, but with a much greater mass. It is classified as a lepton. As with other leptons, the muon is not thought to be composed of any simpler particles; that is, it is a fundamental particle.

<span class="mw-page-title-main">Torque</span> Turning force around an axis

In physics and mechanics, torque is the rotational analogue of linear force. It is also referred to as the moment of force. It describes the rate of change of angular momentum that would be imparted to an isolated body.

<span class="mw-page-title-main">Pion</span> Lightest meson

In particle physics, a pion is any of three subatomic particles:
π0
,
π+
, and
π
. Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more generally, the lightest hadrons. They are unstable, with the charged pions
π+
and
π
decaying after a mean lifetime of 26.033 nanoseconds, and the neutral pion
π0
decaying after a much shorter lifetime of 85 attoseconds. Charged pions most often decay into muons and muon neutrinos, while neutral pions generally decay into gamma rays.

Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

In particle, atomic and condensed matter physics, a Yukawa potential is a potential named after the Japanese physicist Hideki Yukawa. The potential is of the form:

In particle theory, the skyrmion is a topologically stable field configuration of a certain class of non-linear sigma models. It was originally proposed as a model of the nucleon by Tony Skyrme in 1961. As a topological soliton in the pion field, it has the remarkable property of being able to model, with reasonable accuracy, multiple low-energy properties of the nucleon, simply by fixing the nucleon radius. It has since found application in solid-state physics, as well as having ties to certain areas of string theory.

<span class="mw-page-title-main">Chiral model</span> Model of mesons in the massless quark limit

In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N), where N is the number of quark flavors. The Riemannian metric of the target manifold is given by a positive constant multiplied by the Killing form acting upon the Maurer–Cartan form of SU(N).

The ring-imaging Cherenkov, or RICH, detector is a device for identifying the type of an electrically charged subatomic particle of known momentum, that traverses a transparent refractive medium, by measurement of the presence and characteristics of the Cherenkov radiation emitted during that traversal. RICH detectors were first developed in the 1980s and are used in high energy elementary particle-, nuclear- and astro-physics experiments.

In mathematics, a symplectic integrator (SI) is a numerical integration scheme for Hamiltonian systems. Symplectic integrators form the subclass of geometric integrators which, by definition, are canonical transformations. They are widely used in nonlinear dynamics, molecular dynamics, discrete element methods, accelerator physics, plasma physics, quantum physics, and celestial mechanics.

In particle physics, neutral particle oscillation is the transmutation of a particle with zero electric charge into another neutral particle due to a change of a non-zero internal quantum number, via an interaction that does not conserve that quantum number. Neutral particle oscillations were first investigated in 1954 by Murray Gell-mann and Abraham Pais.

<span class="mw-page-title-main">Belle experiment</span>

The Belle experiment was a particle physics experiment conducted by the Belle Collaboration, an international collaboration of more than 400 physicists and engineers, at the High Energy Accelerator Research Organisation (KEK) in Tsukuba, Ibaraki Prefecture, Japan. The experiment ran from 1999 to 2010.

<span class="mw-page-title-main">Rotation around a fixed axis</span> Type of motion

Rotation around a fixed axis is a special case of rotational motion around a axis of rotation fixed, stationary, or static in three-dimensional space. This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will result.

<span class="mw-page-title-main">Richard Dalitz</span> Australian physicist (1925–2006)

Richard Henry Dalitz, FRS was an Australian physicist known for his work in particle physics.

The omega meson is a flavourless meson formed from a superposition of an up quark–antiquark and a down quark–antiquark pair. It is part of the vector meson nonet and mediates the nuclear force along with pions and rho mesons.

CLEO was a general purpose particle detector at the Cornell Electron Storage Ring (CESR), and the name of the collaboration of physicists who operated the detector. The name CLEO is not an acronym; it is short for Cleopatra and was chosen to go with CESR. CESR was a particle accelerator designed to collide electrons and positrons at a center-of-mass energy of approximately 10 GeV. The energy of the accelerator was chosen before the first three bottom quark Upsilon resonances were discovered between 9.4 GeV and 10.4 GeV in 1977. The fourth Υ resonance, the Υ(4S), was slightly above the threshold for, and therefore ideal for the study of, B meson production.

In particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process must each be less massive than the original, although the total invariant mass of the system must be conserved. A particle is unstable if there is at least one allowed final state that it can decay into. Unstable particles will often have multiple ways of decaying, each with its own associated probability. Decays are mediated by one or several fundamental forces. The particles in the final state may themselves be unstable and subject to further decay.

<span class="mw-page-title-main">Rotational diffusion</span>

Rotational diffusion is the rotational movement which acts upon any object such as particles, molecules, atoms when present in a fluid, by random changes in their orientations. Whilst the directions and intensities of these changes are statistically random, they do not arise randomly and are instead the result of interactions between particles. One example occurs in colloids, where relatively large insoluble particles are suspended in a greater amount of fluid. The changes in orientation occur from collisions between the particle and the many molecules forming the fluid surrounding the particle, which each transfer kinetic energy to the particle, and as such can be considered random due to the varied speeds and amounts of fluid molecules incident on each individual particle at any given time.

The eta and eta prime meson are isosinglet mesons made of a mixture of up, down and strange quarks and their antiquarks. The charmed eta meson and bottom eta meson are similar forms of quarkonium; they have the same spin and parity as the (light)
η
defined, but are made of charm quarks and bottom quarks respectively. The top quark is too heavy to form a similar meson, due to its very fast decay.

<span class="mw-page-title-main">Phi meson</span>

In particle physics, the phi meson or
ϕ
meson
is a vector meson formed of a strange quark and a strange antiquark. It was the
ϕ
meson's unusual propensity to decay into
K0
and
K0
that led to the discovery of the OZI rule. It has a mass of 1019.461±0.020 MeV/c2 and a mean lifetime of 1.55±0.01 × 10−22s.

References

  1. The LHCb collaboration. (2019). "Measurement of the branching fractions of the decays D+ → K−K+K+, D+ → π−π+K+ and D+s → π−K+K+". Journal of High Energy Physics . 2019 (176). doi:10.1007/JHEP03(2019)176. hdl: 2445/162294 .
  2. 1 2 R. H. Dalitz (1953). "On the analysis of τ-meson data and the nature of the τ-meson". Philosophical Magazine . 44 (357): 1068–1080. doi:10.1080/14786441008520365.
  3. 1 2 R. H. Dalitz (1954). "Decay of τ mesons of known charge". Physical Review . 94 (4): 1046–1051. Bibcode:1954PhRv...94.1046D. doi:10.1103/PhysRev.94.1046.
  4. Close, Frank (24 January 2006). "Richard Dalitz: Physicist who mapped the behaviour of exotic particles and argued for the reality of quarks". The Guardian.
  5. P. Pakhlov and T. Uglov, Flavor physics at Super B-factories era, J. Phys.: Conf. Ser.675, 022009 (2016).
  6. E. Fabri (1954). "A study of τ-meson decay". Nuovo Cimento . 11 (5): 479–491. Bibcode:1954NCim...11..479F. doi:10.1007/BF02781042. S2CID   120859580.
  7. M. Schulz; et al. (2007). "Four-particle Dalitz plots to visualize atomic break-up processes". Journal of Physics B . 40 (15): 3091–3099. Bibcode:2007JPhB...40.3091S. doi:10.1088/0953-4075/40/15/009.
  8. Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M. (2014-10-14). "Dalitz plot analysis of B s 0 → D ¯ 0 K − π + decays". Physical Review D. Vol. 90, no. 7. p. 072003. doi:10.1103/PhysRevD.90.072003. ISSN   1550-7998 . Retrieved 2021-02-19.