David Allen Hoffman

Last updated

David Allen Hoffman is an American mathematician whose research concerns differential geometry. He is an adjunct professor at Stanford University. [1] In 1985, together with William Meeks, he proved that Costa's surface was embedded. [2] He is a fellow of the American Mathematical Society since 2018, for "contributions to differential geometry, particularly minimal surface theory, and for pioneering the use of computer graphics as an aid to research." [3] He was awarded the Chauvenet Prize in 1990 for his expository article "The Computer-Aided Discovery of New Embedded Minimal Surfaces". [4] He obtained his Ph.D. from Stanford University in 1971 under the supervision of Robert Osserman. [5]

Contents

Technical contributions

In 1973, James Michael and Leon Simon established a Sobolev inequality for functions on submanifolds of Euclidean space, in a form which is adapted to the mean curvature of the submanifold and takes on a special form for minimal submanifolds. [6] One year later, Hoffman and Joel Spruck extended Michael and Simon's work to the setting of functions on immersed submanifolds of Riemannian manifolds. [HS74] Such inequalities are useful for many problems in geometric analysis which deal with some form of prescribed mean curvature. [7] [8] As usual for Sobolev inequalities, Hoffman and Spruck were also able to derive new isoperimetric inequalities for submanifolds of Riemannian manifolds. [HS74]

It is well known that there is a wide variety of minimal surfaces in the three-dimensional Euclidean space. Hoffman and William Meeks proved that any minimal surface which is contained in a half-space must fail to be properly immersed. [HM90] That is, there must exist a compact set in Euclidean space which contains a noncompact region of the minimal surface. The proof is a simple application of the maximum principle and unique continuation for minimal surfaces, based on comparison with a family of catenoids. This enhances a result of Meeks, Leon Simon, and Shing-Tung Yau, which states that any two complete and properly immersed minimal surfaces in three-dimensional Euclidean space, if both are nonplanar, either have a point of intersection or are separated from each other by a plane. [9] Hoffman and Meeks' result rules out the latter possibility.

Major publications

Related Research Articles

<span class="mw-page-title-main">Shing-Tung Yau</span> Chinese mathematician

Shing-Tung Yau is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau retired from Harvard to become a professor of mathematics at Tsinghua University.

<span class="mw-page-title-main">Eugenio Calabi</span> Italian-born American mathematician (1923–2023)

Eugenio Calabi was an Italian-born American mathematician and the Thomas A. Scott Professor of Mathematics at the University of Pennsylvania, specializing in differential geometry, partial differential equations and their applications.

<span class="mw-page-title-main">Richard S. Hamilton</span> American mathematician (born 1943)

Richard Streit Hamilton is an American mathematician who serves as the Davies Professor of Mathematics at Columbia University. He is known for contributions to geometric analysis and partial differential equations. Hamilton is best known for foundational contributions to the theory of the Ricci flow and the development of a corresponding program of techniques and ideas for resolving the Poincaré conjecture and geometrization conjecture in the field of geometric topology. Grigori Perelman built upon Hamilton's results to prove the conjectures, and was awarded a Millennium Prize for his work. However, Perelman declined the award, regarding Hamilton's contribution as being equal to his own.

In the mathematical field of differential geometry, there are various splitting theorems on when a pseudo-Riemannian manifold can be given as a metric product. The best-known is the Cheeger–Gromoll splitting theorem for Riemannian manifolds, although there has also been research into splitting of Lorentzian manifolds.

In mathematics, the soul theorem is a theorem of Riemannian geometry that largely reduces the study of complete manifolds of non-negative sectional curvature to that of the compact case. Jeff Cheeger and Detlef Gromoll proved the theorem in 1972 by generalizing a 1969 result of Gromoll and Wolfgang Meyer. The related soul conjecture, formulated by Cheeger and Gromoll at that time, was proved twenty years later by Grigori Perelman.

<span class="mw-page-title-main">Richard Schoen</span> American mathematician

Richard Melvin Schoen is an American mathematician known for his work in differential geometry and geometric analysis. He is best known for the resolution of the Yamabe problem in 1984.

<span class="mw-page-title-main">Geometric analysis</span> Field of higher mathematics

Geometric analysis is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations (PDEs), are used to establish new results in differential geometry and differential topology. The use of linear elliptic PDEs dates at least as far back as Hodge theory. More recently, it refers largely to the use of nonlinear partial differential equations to study geometric and topological properties of spaces, such as submanifolds of Euclidean space, Riemannian manifolds, and symplectic manifolds. This approach dates back to the work by Tibor Radó and Jesse Douglas on minimal surfaces, John Forbes Nash Jr. on isometric embeddings of Riemannian manifolds into Euclidean space, work by Louis Nirenberg on the Minkowski problem and the Weyl problem, and work by Aleksandr Danilovich Aleksandrov and Aleksei Pogorelov on convex hypersurfaces. In the 1980s fundamental contributions by Karen Uhlenbeck, Clifford Taubes, Shing-Tung Yau, Richard Schoen, and Richard Hamilton launched a particularly exciting and productive era of geometric analysis that continues to this day. A celebrated achievement was the solution to the Poincaré conjecture by Grigori Perelman, completing a program initiated and largely carried out by Richard Hamilton.

<span class="mw-page-title-main">Thierry Aubin</span> French mathematician

Thierry Aubin was a French mathematician who worked at the Centre de Mathématiques de Jussieu, and was a leading expert on Riemannian geometry and non-linear partial differential equations. His fundamental contributions to the theory of the Yamabe equation led, in conjunction with results of Trudinger and Schoen, to a proof of the Yamabe Conjecture: every compact Riemannian manifold can be conformally rescaled to produce a manifold of constant scalar curvature. Along with Yau, he also showed that Kähler manifolds with negative first Chern classes always admit Kähler–Einstein metrics, a result closely related to the Calabi conjecture. The latter result, established by Yau, provides the largest class of known examples of compact Einstein manifolds. Aubin was the first mathematician to propose the Cartan–Hadamard conjecture.

In the mathematical fields of differential geometry and geometric analysis, inverse mean curvature flow (IMCF) is a geometric flow of submanifolds of a Riemannian or pseudo-Riemannian manifold. It has been used to prove a certain case of the Riemannian Penrose inequality, which is of interest in general relativity.

The Geometry Festival is an annual mathematics conference held in the United States.

<span class="mw-page-title-main">Robert Osserman</span> American mathematician

Robert "Bob" Osserman was an American mathematician who worked in geometry. He is specially remembered for his work on the theory of minimal surfaces.

<span class="mw-page-title-main">H. Blaine Lawson</span> American mathematician

Herbert Blaine Lawson, Jr. is a mathematician best known for his work in minimal surfaces, calibrated geometry, and algebraic cycles. He is currently a Distinguished Professor of Mathematics at Stony Brook University. He received his PhD from Stanford University in 1969 for work carried out under the supervision of Robert Osserman.

<span class="mw-page-title-main">Leon Simon</span> Australian mathematician (born 1945)

Leon Melvyn Simon, born in 1945, is a Leroy P. Steele Prize and Bôcher Prize-winning mathematician, known for deep contributions to the fields of geometric analysis, geometric measure theory, and partial differential equations. He is currently Professor Emeritus in the Mathematics Department at Stanford University.

Ailana Margaret Fraser is a Canadian mathematician and professor of mathematics at the University of British Columbia. She is known for her work in geometric analysis and the theory of minimal surfaces. Her research is particularly focused on extremal eigenvalue problems and sharp eigenvalue estimates for surfaces, min-max minimal surface theory, free boundary minimal surfaces, and positive isotropic curvature.

<span class="mw-page-title-main">Gerhard Huisken</span> German mathematician

Gerhard Huisken is a German mathematician whose research concerns differential geometry and partial differential equations. He is known for foundational contributions to the theory of the mean curvature flow, including Huisken's monotonicity formula, which is named after him. With Tom Ilmanen, he proved a version of the Riemannian Penrose inequality, which is a special case of the more general Penrose conjecture in general relativity.

Mu-Tao Wang is a Taiwanese mathematician and current Professor of Mathematics at Columbia University.

<span class="mw-page-title-main">William Hamilton Meeks, III</span> American mathematician

William Hamilton Meeks III is an American mathematician, specializing in differential geometry and minimal surfaces.

Peter Wai-Kwong Li is an American mathematician whose research interests include differential geometry and partial differential equations, in particular geometric analysis. After undergraduate work at California State University, Fresno, he received his Ph.D. at University of California, Berkeley under Shiing-Shen Chern in 1979. Presently he is Professor Emeritus at University of California, Irvine, where he has been located since 1991.

Joel Spruck is a mathematician, J. J. Sylvester Professor of Mathematics at Johns Hopkins University, whose research concerns geometric analysis and elliptic partial differential equations. He obtained his PhD from Stanford University with the supervision of Robert S. Finn in 1971.

In the mathematical field of differential geometry, a maximal surface is a certain kind of submanifold of a Lorentzian manifold. Precisely, given a Lorentzian manifold (M, g), a maximal surface is a spacelike submanifold of M whose mean curvature is zero. As such, maximal surfaces in Lorentzian geometry are directly analogous to minimal surfaces in Riemannian geometry. The difference in terminology between the two settings has to do with the fact that small regions in maximal surfaces are local maximizers of the area functional, while small regions in minimal surfaces are local minimizers of the area functional.

References

  1. "David Hoffman | Mathematics". mathematics.stanford.edu.
  2. "Costa Surface". minimal.sitehost.iu.edu.
  3. "Fellows of the American Mathematical Society". American Mathematical Society.
  4. "Chauvenet Prizes | Mathematical Association of America". www.maa.org.
  5. "David Hoffman - the Mathematics Genealogy Project".
  6. Michael, J. H.; Simon, L. M. (1973). "Sobolev and mean-value inequalities on generalized submanifolds of Rn". Communications on Pure and Applied Mathematics . 26 (3): 361–379. doi:10.1002/cpa.3160260305. MR   0344978. Zbl   0256.53006.
  7. Huisken, Gerhard (1986). "Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature". Inventiones Mathematicae . 84 (3): 463–480. Bibcode:1986InMat..84..463H. doi:10.1007/BF01388742. hdl: 11858/00-001M-0000-0013-592E-F . MR   0837523. S2CID   55451410. Zbl   0589.53058.
  8. Schoen, Richard; Yau, Shing Tung (1981). "Proof of the positive mass theorem. II". Communications in Mathematical Physics . 79 (2): 231–260. Bibcode:1981CMaPh..79..231S. doi:10.1007/BF01942062. MR   0612249. S2CID   59473203. Zbl   0494.53028.
  9. Meeks, William III; Simon, Leon; Yau, Shing Tung (1982). "Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature". Annals of Mathematics . Second Series. 116 (3): 621–659. doi:10.2307/2007026. JSTOR   2007026. MR   0678484. Zbl   0521.53007.