Joel Spruck (born 1946 [1] ) is a mathematician, J. J. Sylvester Professor of Mathematics at Johns Hopkins University, whose research concerns geometric analysis and elliptic partial differential equations. [2] He obtained his PhD from Stanford University with the supervision of Robert S. Finn in 1971. [3]
Spruck is well known in the field of elliptic partial differential equations for his series of papers "The Dirichlet problem for nonlinear second-order elliptic equations," written in collaboration with Luis Caffarelli, Joseph J. Kohn, and Louis Nirenberg. These papers were among the first to develop a general theory of second-order elliptic differential equations which are fully nonlinear, with a regularity theory that extends to the boundary. Caffarelli, Nirenberg & Spruck (1985) has been particularly influential in the field of geometric analysis since many geometric partial differential equations are amenable to its methods.
With Basilis Gidas, Spruck studied positive solutions of subcritical second-order elliptic partial differential equations of Yamabe type. With Caffarelli, they studied the Yamabe equation on Euclidean space, proving a positive mass-style theorem on the asymptotic behavior of isolated singularities.
In 1974, Spruck and David Hoffman extended a mean curvature-based Sobolev inequality of James H. Michael and Leon Simon to the setting of submanifolds of Riemannian manifolds. [4] This has been useful for the study of many analytic problems in geometric settings, such as for Gerhard Huisken's study of mean curvature flow in Riemannian manifolds and for Richard Schoen and Shing-Tung Yau's study of the Jang equation in their resolution of the positive energy theorem in general relativity. [5] [6]
In the late 80s, Stanley Osher and James Sethian developed the level-set method as a computational tool in numerical analysis. [7] In collaboration with Lawrence Evans, Spruck pioneered the rigorous study of the level-set flow, as adapted to the mean curvature flow. The level-set approach to mean curvature flow is important in the technical ease with topological change can occur along the flow. The same approach was independently developed by Yun Gang Chen, Yoshikazu Giga, and Shun'ichi Goto. [8] The works of Evans–Spruck and Chen–Giga–Goto found significant application in Gerhard Huisken and Tom Ilmanen's solution of the Riemannian Penrose inequality of general relativity and differential geometry, where they adapted the level-set approach to the inverse mean curvature flow. [9] [10]
In 1994 Spruck was an invited speaker at the International Congress of Mathematicians in Zurich. [11]
Shing-Tung Yau is a Chinese-American mathematician. He is the director of the Yau Mathematical Sciences Center at Tsinghua University and Professor Emeritus at Harvard University. Until 2022 he was the William Caspar Graustein Professor of Mathematics at Harvard, at which point he moved to Tsinghua.
Richard Streit Hamilton is an American mathematician who serves as the Davies Professor of Mathematics at Columbia University. He is known for contributions to geometric analysis and partial differential equations. Hamilton is best known for foundational contributions to the theory of the Ricci flow and the development of a corresponding program of techniques and ideas for resolving the Poincaré conjecture and geometrization conjecture in the field of geometric topology. Grigori Perelman built upon Hamilton's results to prove the conjectures, and was awarded a Millennium Prize for his work. However, Perelman declined the award, regarding Hamilton's contribution as being equal to his own.
The Bôcher Memorial Prize was founded by the American Mathematical Society in 1923 in memory of Maxime Bôcher with an initial endowment of $1,450. It is awarded every three years for a notable research work in analysis that has appeared during the past six years. The work must be published in a recognized, peer-reviewed venue. The current award is $5,000.
In the mathematical fields of differential equations and geometric analysis, the maximum principle is one of the most useful and best known tools of study. Solutions of a differential inequality in a domain D satisfy the maximum principle if they achieve their maxima at the boundary of D.
Louis Nirenberg was a Canadian-American mathematician, considered one of the most outstanding mathematicians of the 20th century.
Richard Melvin Schoen is an American mathematician known for his work in differential geometry and geometric analysis. He is best known for the resolution of the Yamabe problem in 1984.
Lawrence Craig Evans is an American mathematician and Professor of Mathematics at the University of California, Berkeley.
Shiu-Yuen Cheng (鄭紹遠) is a Hong Kong mathematician. He is currently the Chair Professor of Mathematics at the Hong Kong University of Science and Technology. Cheng received his Ph.D. in 1974, under the supervision of Shiing-Shen Chern, from University of California at Berkeley. Cheng then spent some years as a post-doctoral fellow and assistant professor at Princeton University and the State University of New York at Stony Brook. Then he became a full professor at University of California at Los Angeles. Cheng chaired the Mathematics departments of both the Chinese University of Hong Kong and the Hong Kong University of Science and Technology in the 1990s. In 2004, he became the Dean of Science at HKUST. In 2012, he became a fellow of the American Mathematical Society.
In mathematics, a (real) Monge–Ampère equation is a nonlinear second-order partial differential equation of special kind. A second-order equation for the unknown function u of two variables x,y is of Monge–Ampère type if it is linear in the determinant of the Hessian matrix of u and in the second-order partial derivatives of u. The independent variables (x,y) vary over a given domain D of R2. The term also applies to analogous equations with n independent variables. The most complete results so far have been obtained when the equation is elliptic.
In the field of differential geometry in mathematics, mean curvature flow is an example of a geometric flow of hypersurfaces in a Riemannian manifold. Intuitively, a family of surfaces evolves under mean curvature flow if the normal component of the velocity of which a point on the surface moves is given by the mean curvature of the surface. For example, a round sphere evolves under mean curvature flow by shrinking inward uniformly. Except in special cases, the mean curvature flow develops singularities.
In the mathematical fields of differential geometry and geometric analysis, inverse mean curvature flow (IMCF) is a geometric flow of submanifolds of a Riemannian or pseudo-Riemannian manifold. It has been used to prove a certain case of the Riemannian Penrose inequality, which is of interest in general relativity.
Robert "Bob" Osserman was an American mathematician who worked in geometry. He is specially remembered for his work on the theory of minimal surfaces.
Leon Melvyn Simon, born in 1945, is a Leroy P. Steele Prize and Bôcher Prize-winning mathematician, known for deep contributions to the fields of geometric analysis, geometric measure theory, and partial differential equations. He is currently Professor Emeritus in the Mathematics Department at Stanford University.
In differential geometry, the Minkowski problem, named after Hermann Minkowski, asks for the construction of a strictly convex compact surface S whose Gaussian curvature is specified. More precisely, the input to the problem is a strictly positive real function ƒ defined on a sphere, and the surface that is to be constructed should have Gaussian curvature ƒ(n(x)) at the point x, where n(x) denotes the normal to S at x. Eugenio Calabi stated: "From the geometric view point it [the Minkowski problem] is the Rosetta Stone, from which several related problems can be solved."
In mathematics, k-Hessian equations are partial differential equations (PDEs) based on the Hessian matrix. More specifically, a Hessian equation is the k-trace, or the kth elementary symmetric polynomial of eigenvalues of the Hessian matrix. When k ≥ 2, the k-Hessian equation is a fully nonlinear partial differential equation. It can be written as , where , , and , are the eigenvalues of the Hessian matrix and , is a th elementary symmetric polynomial.
Gerhard Huisken is a German mathematician whose research concerns differential geometry and partial differential equations. He is known for foundational contributions to the theory of the mean curvature flow, including Huisken's monotonicity formula, which is named after him. With Tom Ilmanen, he proved a version of the Riemannian Penrose inequality, which is a special case of the more general Penrose conjecture in general relativity.
David Allen Hoffman is an American mathematician whose research concerns differential geometry. He is an adjunct professor at Stanford University. In 1985, together with William Meeks, he proved that Costa's surface was embedded. He is a fellow of the American Mathematical Society since 2018, for "contributions to differential geometry, particularly minimal surface theory, and for pioneering the use of computer graphics as an aid to research." He was awarded the Chauvenet Prize in 1990 for his expository article "The Computer-Aided Discovery of New Embedded Minimal Surfaces". He obtained his Ph.D. from Stanford University in 1971 under the supervision of Robert Osserman.
Basilis Gidas is an applied mathematician at Brown University, interested in many applications of mathematics. Following degrees in electrical engineering, mechanical engineering, and mathematics, he obtained a combined Ph.D. in physics and nuclear engineering at the University of Michigan in 1970. He is an elected fellow of the Institute of Mathematical Statistics. He has had past appointments in various mathematics and physics departments at the Institute for Advanced Study, Rutgers University, Rockefeller University, Bielefeld University, University of Washington, and University of Michigan.
Wei-Ming Ni is a Taiwanese mathematician at the University of Minnesota, Presidential Chair Professor of The Chinese University of Hong Kong, Shenzhen, and was formerly the director of the Center for PDE at the East China Normal University. He works in the field of elliptic and parabolic partial differential equations. He did undergraduate work at National Taiwan University and obtained his Ph.D. at New York University, in 1979, under the supervision of Louis Nirenberg. He is an editor-in-chief of the Journal of Differential Equations, and was an ISI Highly Cited Researcher in 2002. As said by the journal Discrete and Continuous Dynamical Systems:
[Ni] first became a household name in the PDE community when he published with Gidas and Nirenberg the seminal paper in 1979, “On the symmetry of positive solutions of nonlinear elliptic equations” [...] The research and expository work of Professor Ni has influenced the research directions and activities of a large number of mathematicians, many of whom are playing important roles in the field of partial differential equations today.
In the mathematical field of differential geometry, the Simons formula is a fundamental equation in the study of minimal submanifolds. It was discovered by James Simons in 1968. It can be viewed as a formula for the Laplacian of the second fundamental form of a Riemannian submanifold. It is often quoted and used in the less precise form of a formula or inequality for the Laplacian of the length of the second fundamental form.