Tom Ilmanen

Last updated
Tom Ilmanen
Born1961
NationalityAmerican
EducationPh.D. in Mathematics
Alma mater University of California, Berkeley
OccupationMathematician
Known forResearch in differential geometry, proof of Riemannian Penrose conjecture

Tom Ilmanen (born 1961) is an American mathematician specializing in differential geometry and the calculus of variations. He is a professor at ETH Zurich. [1] He obtained his PhD in 1991 at the University of California, Berkeley with Lawrence Craig Evans as supervisor. [2] Ilmanen and Gerhard Huisken used inverse mean curvature flow to prove the Riemannian Penrose conjecture, which is the fifteenth problem in Yau's list of open problems, [3] and was resolved at the same time in greater generality by Hubert Bray using alternative methods. [4]

In 2001, Huisken and Ilmanen made a conjecture on the mathematics of general relativity, about the curvature in spaces with very little mass. This[ clarification needed ] was proved in 2023 by Conghan Dong and Antoine Song. [5]

He received a Sloan Fellowship in 1996. [6]

He wrote the research monograph Elliptic Regularization and Partial Regularity for Motion by Mean Curvature.

Selected publications

Related Research Articles

<span class="mw-page-title-main">Ricci flow</span> Partial differential equation

In the mathematical fields of differential geometry and geometric analysis, the Ricci flow, sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation.

<span class="mw-page-title-main">Shing-Tung Yau</span> Chinese mathematician

Shing-Tung Yau is a Chinese-American mathematician. He is the director of the Yau Mathematical Sciences Center at Tsinghua University and professor emeritus at Harvard University. Until 2022, Yau was the William Caspar Graustein Professor of Mathematics at Harvard, at which point he moved to Tsinghua.

<span class="mw-page-title-main">Richard S. Hamilton</span> American mathematician (1943–2024)

Richard Streit Hamilton was an American mathematician who served as the Davies Professor of Mathematics at Columbia University.

<span class="mw-page-title-main">Richard Schoen</span> American mathematician

Richard Melvin Schoen is an American mathematician known for his work in differential geometry and geometric analysis. He is best known for the resolution of the Yamabe problem in 1984 and his works on harmonic maps.

Huai-Dong Cao is a Chinese–American mathematician. He is the A. Everett Pitcher Professor of Mathematics at Lehigh University. He is known for his research contributions to the Ricci flow, a topic in the field of geometric analysis.

<span class="mw-page-title-main">Thierry Aubin</span> French mathematician

Thierry Aubin was a French mathematician who worked at the Centre de Mathématiques de Jussieu, and was a leading expert on Riemannian geometry and non-linear partial differential equations. His fundamental contributions to the theory of the Yamabe equation led, in conjunction with results of Trudinger and Schoen, to a proof of the Yamabe Conjecture: every compact Riemannian manifold can be conformally rescaled to produce a manifold of constant scalar curvature. Along with Yau, he also showed that Kähler manifolds with negative first Chern classes always admit Kähler–Einstein metrics, a result closely related to the Calabi conjecture. The latter result, established by Yau, provides the largest class of known examples of compact Einstein manifolds. Aubin was the first mathematician to propose the Cartan–Hadamard conjecture.

In mathematical general relativity, the Penrose inequality, first conjectured by Sir Roger Penrose, estimates the mass of a spacetime in terms of the total area of its black holes and is a generalization of the positive mass theorem. The Riemannian Penrose inequality is an important special case. Specifically, if (Mg) is an asymptotically flat Riemannian 3-manifold with nonnegative scalar curvature and ADM mass m, and A is the area of the outermost minimal surface (possibly with multiple connected components), then the Riemannian Penrose inequality asserts

In the mathematical fields of differential geometry and geometric analysis, inverse mean curvature flow (IMCF) is a geometric flow of submanifolds of a Riemannian or pseudo-Riemannian manifold. It has been used to prove a certain case of the Riemannian Penrose inequality, which is of interest in general relativity.

<span class="mw-page-title-main">Leon Simon</span> Australian mathematician (born 1945)

Leon Melvyn Simon, born in 1945, is a Leroy P. Steele Prize and Bôcher Prize-winning mathematician, known for deep contributions to the fields of geometric analysis, geometric measure theory, and partial differential equations. He is currently Professor Emeritus in the Mathematics Department at Stanford University.

<span class="mw-page-title-main">Robert Bryant (mathematician)</span> American mathematician (born 1953)

Robert Leamon Bryant is an American mathematician. He works at Duke University and specializes in differential geometry.

<span class="mw-page-title-main">Simon Brendle</span> German mathematician

Simon Brendle is a German-American mathematician working in differential geometry and nonlinear partial differential equations. At the age of 19, he received his Dr. rer. nat. from Tübingen University under the supervision of Gerhard Huisken (2001). He was a professor at Stanford University (2005–2016), and is currently a professor at Columbia University. He has held visiting positions at MIT, ETH Zürich, Princeton University, and Cambridge University.

<span class="mw-page-title-main">Gerhard Huisken</span> German mathematician

Gerhard Huisken is a German mathematician whose research concerns differential geometry and partial differential equations. He is known for foundational contributions to the theory of the mean curvature flow, including Huisken's monotonicity formula, which is named after him. With Tom Ilmanen, he proved a version of the Riemannian Penrose inequality, which is a special case of the more general Penrose conjecture in general relativity.

<span class="mw-page-title-main">William Hamilton Meeks, III</span> American mathematician

William Hamilton Meeks III is an American mathematician, specializing in differential geometry and minimal surfaces.

Peter Wai-Kwong Li is an American mathematician whose research interests include differential geometry and partial differential equations, in particular geometric analysis. After undergraduate work at California State University, Fresno, he received his Ph.D. at University of California, Berkeley under Shiing-Shen Chern in 1979. Presently he is Professor Emeritus at University of California, Irvine, where he has been located since 1991.

Antoine Song is a French mathematician whose research concerns differential geometry. In 2018, he proved Yau's conjecture. He is a Clay Research Fellow (2019–2024). He obtained his Ph.D. from Princeton University in 2019 under the supervision of Fernando Codá Marques. He is an assistant professor of mathematics at Caltech. He is a Sloan Fellow. In 2023, together with Conghan Dong, he proved a conjecture from 2001 by Huisken and Ilmanen on the mathematics of general relativity, about the curvature in spaces with very little mass.

Joel Spruck is a mathematician, J. J. Sylvester Professor of Mathematics at Johns Hopkins University, whose research concerns geometric analysis and elliptic partial differential equations. He obtained his PhD from Stanford University with the supervision of Robert S. Finn in 1971.

In the mathematical field of differential geometry, a maximal surface is a certain kind of submanifold of a Lorentzian manifold. Precisely, given a Lorentzian manifold (M, g), a maximal surface is a spacelike submanifold of M whose mean curvature is zero. As such, maximal surfaces in Lorentzian geometry are directly analogous to minimal surfaces in Riemannian geometry. The difference in terminology between the two settings has to do with the fact that small regions in maximal surfaces are local maximizers of the area functional, while small regions in minimal surfaces are local minimizers of the area functional.

In the mathematical fields of differential geometry and geometric analysis, the Gauss curvature flow is a geometric flow for oriented hypersurfaces of Riemannian manifolds. In the case of curves in a two-dimensional manifold, it is identical with the curve shortening flow. The mean curvature flow is a different geometric flow which also has the curve shortening flow as a special case.

<i>Extrinsic Geometric Flows</i> Geometry textbook

Extrinsic Geometric Flows is an advanced mathematics textbook that overviews geometric flows, mathematical problems in which a curve or surface moves continuously according to some rule. It focuses on extrinsic flows, in which the rule depends on the embedding of a surface into space, rather than intrinsic flows such as the Ricci flow that depend on the internal geometry of the surface and can be defined without respect to an embedding.

References

  1. Switzerland, ETH Zürich Professur für Mathematik HG G. 62 3 Rämistrasse 101 8092 Zürich. "Tom Ilmanen". math.ethz.ch.{{cite web}}: CS1 maint: numeric names: authors list (link)
  2. Tom Ilmanen at the Mathematics Genealogy Project
  3. Differential Geometry: Partial Differential Equations on Manifolds. (1993). In R. Greene & S.-T. Yau (Eds.), Proceedings of Symposia in Pure Mathematics. American Mathematical Society. https://doi.org/10.1090/pspum/054.1 https://doi.org/10.1090/pspum/054.1
  4. Mars, M. (2009). "Present status of the Penrose inequality". Classical and Quantum Gravity (Vol. 26, Issue 19, p. 193). IOP Publishing.
  5. Nadis, Steve (30 November 2023), "A Century Later, New Math Smooths Out General Relativity", Quanta Magazine
  6. "Fellows Database | Alfred P. Sloan Foundation". sloan.org.