De Havilland Sprite

Last updated

Sprite/Super Sprite
DH Super Sprite DHAM 2022.jpg
de Havilland Super Sprite on display at the de Havilland Aircraft Museum
Type Rocket engine
National origin United Kingdom
Manufacturer de Havilland Engine Company
First runMay 1951 (first flight)

The de Havilland Sprite is a British rocket engine that was built by de Havilland in the early-1950s for use in RATO (Rocket-assisted take off) applications. A developed engine with slightly less thrust but a longer burn time was known as the Super Sprite, production ceased in October 1960.

Contents

Design and development

For RATO use only a short burn time is required, with simplicity and light weight as major virtues. The intended market was for assisting take-off of de Havilland Comet 1 airliners (as hot and high operations in the British Empire were considered important) and also for V bombers carrying heavy nuclear weapons. [1] [2] [3] 30 successful test flights were carried out by Comets, from May 1951, but gas turbine performance improved rapidly, and so RATO was not required in service.

A hydrogen peroxide monopropellant was used, decomposed into oxygen and steam over a metallic calcium catalyst. The maximum thrust was 5,000 lbf (22 kN), varying over the 16 second burn time for a total impulse of 55,000 lbf (240 kN) seconds. [4]

A technology update then took place with the proving of silver-plated nickel gauze packs as catalysts with the establishment of optimum loadings and flows. This practice was replicated in all future applications with the catalyst no longer consumed.

In April 1952 the DSpr.2 proved this modification impressively in Comet demonstrations with clean exhaust. The next stage was pursued with the Super Sprite (DSpr.4) following the ATO development precedent with 'hot' operation but now enhanced in simplicity by ability to inject kerosene fuel once chamber pressure was established by the catalysed peroxide flow. The units, flight approved in August 1953, reverted to the practice of being parachuted after firing for routine re-use in service operations with the Vickers Valiant V bomber. [5]

Variants

Nacelle-mounted Super Sprite with jettison recovery parachute on display at the Rolls-Royce Heritage Trust, Derby DH Super Sprite RRHT.jpg
Nacelle-mounted Super Sprite with jettison recovery parachute on display at the Rolls-Royce Heritage Trust, Derby
Sprite DSpr.1
Sprite DSpr.2
Silver-plated nickel-gauze catalyst, tested in Comets during April 1952
Sprite DSpr.3
Super Sprite DSpr.4

Super Sprite

The Super Sprite was a re-development of the Sprite application, using a significantly different 'hot' propellant technology, that of hydrogen peroxide / kerosene. [6] [7] Although the peak thrust was actually reduced, burn time was 2.5 times longer, with a proportionate increase in total impulse.

For simplicity, there were no fuel pumps and the tanks were pressurised by nitrogen from nine cylinders wrapped around the combustion chamber. [4] The Super Sprite was packaged as a self-contained engine in its own nacelle, jettisoned after take-off and retrieved by parachute. Inflatable air bags cushioned its impact with the ground. To obtain a clean separation from the carrier aircraft, the production engines fitted to the Vickers Valiant had a small canard vane at the nose, pitching the nacelle downwards on separation.

De Havilland regarded the 166 Super Sprite units manufactured as a standard production item, supported by their service department alongside piston and turbojet engines. It was the first rocket engine to gain formal type approval. [8]

The Super Sprite project was cancelled in October 1960, at a reported total cost of £850,000. [9]

Applications

Specifications (Sprite (DSpr.l))

Super Sprite at the RAF Museum Cosford De Havilland Super Sprite (Cosford).jpg
Super Sprite at the RAF Museum Cosford

General characteristics

Components

Performance

See also

Related development

Comparable engines

Related lists

Related Research Articles

A monopropellant rocket is a rocket that uses a single chemical as its propellant. Monopropellant rockets are commonly used as small attitude and trajectory control rockets in satellites, rocket upper stages, manned spacecraft, and spaceplanes.

<span class="mw-page-title-main">JATO</span> Type of aircraft assisted take-off

JATO is a type of assisted take-off for helping overloaded aircraft into the air by providing additional thrust in the form of small rockets. The term JATO is used interchangeably with the term RATO, for rocket-assisted take-off.

A tripropellant rocket is a rocket that uses three propellants, as opposed to the more common bipropellant rocket or monopropellant rocket designs, which use two or one propellants, respectively. Tripropellant systems can be designed to have high specific impulse and have been investigated for single-stage-to-orbit designs. While tripropellant engines have been tested by Rocketdyne and NPO Energomash, no tripropellant rocket has been flown.

Monopropellants are propellants consisting of chemicals that release energy through exothermic chemical decomposition. The molecular bond energy of the monopropellant is released usually through use of a catalyst. This can be contrasted with bipropellants that release energy through the chemical reaction between an oxidizer and a fuel. While stable under defined storage conditions, monopropellants decompose very rapidly under certain other conditions to produce a large volume of its own energetic (hot) gases for the performance of mechanical work. Although solid deflagrants such as nitrocellulose, the most commonly used propellant in firearms, could be thought of as monopropellants, the term is usually reserved for liquids in engineering literature.

<span class="mw-page-title-main">Reaction Motors XLR99</span>

The Reaction Motors LR99 engine was the first large, throttleable, restartable liquid-propellant rocket engine. Development began in the 1950s by the Reaction Motors Division of Thiokol Chemical Company to power the North American X-15 hypersonic research aircraft. It could deliver up to 57,000 lbf (250 kN) of thrust with a specific impulse of 279 s (2.74 km/s) or 239 s (2.34 km/s) at sea level. Thrust was variable from 50 to 100 percent, and the restart capability allowed it to be shut down and restarted during flight when necessary.

High-test peroxide (HTP) is a highly concentrated solution of hydrogen peroxide, with the remainder consisting predominantly of water. In contact with a catalyst, it decomposes into a high-temperature mixture of steam and oxygen, with no remaining liquid water. It was used as a propellant of HTP rockets and torpedoes, and has been used for high-performance vernier engines.

The highest specific impulse chemical rockets use liquid propellants. They can consist of a single chemical or a mix of two chemicals, called bipropellants. Bipropellants can further be divided into two categories; hypergolic propellants, which ignite when the fuel and oxidizer make contact, and non-hypergolic propellants which require an ignition source.

de Havilland Spectre 1950s British aircraft rocket engine

The de Havilland Spectre is a rocket engine that was built by the de Havilland Engine Company in the 1950s. It was one element of the intended mixed power-plant for combination rocket-jet interceptor aircraft of the Royal Air Force, such as the Saunders-Roe SR.177.

<span class="mw-page-title-main">Vickers Type 559</span> 1950s British interceptor aircraft design

The Vickers Type 559 was a supersonic interceptor aircraft design by the British aircraft company Vickers-Armstrongs and was their submission for Operational Requirement F.155 in 1955.

<span class="mw-page-title-main">Bristol Siddeley BS.605</span> 1960s British aircraft rocket engine

The Bristol Siddeley BS.605 was a British take off assist rocket engine of the mid-1960s that used hydrogen peroxide and kerosene propellant.

<span class="mw-page-title-main">Bristol Siddeley Gamma</span> 1950s British rocket engine

The Armstrong Siddeley, later Bristol SiddeleyGamma was a family of rocket engines used in British rocketry, including the Black Knight and Black Arrow launch vehicles. They burned kerosene fuel and hydrogen peroxide. Their construction was based on a common combustion chamber design, used either singly or in clusters of up to eight.

<span class="mw-page-title-main">Napier Scorpion</span> 1950s British aircraft rocket engine

The Napier Scorpion series of rocket engines are a family of British liquid-fuelled engines that were developed and manufactured by Napier at the Napier Flight Development Establishment, Luton, in the late 1950s. The Scorpion range were designed and flight tested as boosters to improve aircraft take-off performance.

<span class="mw-page-title-main">Armstrong Siddeley Stentor</span> 1950s-60s British missile rocket engine

The Armstrong Siddeley Stentor, latterly Bristol Siddeley BSSt.1 Stentor, was a two-chamber HTP rocket engine used to power the Blue Steel stand-off missile carried by Britain's V bomber force. The high thrust chamber was used for the first 29 seconds, after which it was shut down and a smaller cruise chamber was used for the rest of the powered flight.

The Armstrong Siddeley Snarler was a small rocket engine used for mixed-power experiments with an early turbojet engine. and was the first British liquid-fuelled rocket engine to fly.

Armstrong Siddeley Beta was an early rocket engine, intended for use in supersonic aircraft.

<span class="mw-page-title-main">Avro 720</span> Type of aircraft

The Avro 720 was an in-development British single-seat interceptor of the 1950s. It was designed and being developed by Avro in competition with the Saunders-Roe-built SR.53. While at least one prototype was partially-constructed, the order for the Avro 720, and quickly thereafter the project entirely, was terminated prior to any aircraft having been completed.

<span class="mw-page-title-main">Rocket propellant</span> Chemical or mixture used as fuel for a rocket engine

Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

<span class="mw-page-title-main">Walter HWK 109-500</span> 1940s German aircraft rocket engine

The Walter HWK 109-500 was a liquid-fuelled rocket engine developed by Walter in Germany during the Second World War.

<span class="mw-page-title-main">Walter HWK 109-507</span>

The HWK 109-507 was a liquid-propellant rocket engine developed by Germany during World War II. It was used to propel the Hs 293 anti-ship guided missile.

<span class="mw-page-title-main">Rocketdyne AR2</span> 1950s American aircraft rocket engine

The Rocketdyne AR2, also known by the military designation LR42, was a family of liquid-fuelled rocket engines designed and produced in the United States (US) during the 1950s and 1960s.

References

  1. "Enterprise in Rocketry Activity at De Havilland Engine Co" (PDF). The Aeroplane. 4 March 1955. Archived from the original (PDF) on 15 February 2006.
  2. "More About the Super Sprite" (PDF). The Aeroplane. 29 July 1955. Archived from the original (PDF) on 15 February 2006.
  3. "Super Sprite. The First British Production Type A.T.O. Rocket Motor". Flight : 183–188. 5 August 1955.
  4. 1 2 E. Ower & J. Nayler (1956). High Speed Flight. London: Hutchinson's. pp. 97–98.
  5. "Super Sprite". Flight : 392. 20 March 1959.
  6. "Super Sprite". Flight : 298. 8 March 1957.
  7. "Super Sprite". Flight : 337. 30 August 1957.
  8. Hydrogen Peroxide as a Source of Energy. ( (PDF). de Havilland Engine Co. 1957. Archived from the original (PDF) on 15 February 2006.
  9. "Cancelled projects: the list up-dated". Flight : 262. 17 August 1967.