Dermatoglyphics

Last updated
Guide to fingerprint identification Guide to finger-print identification (electronic resource) (1905) (14597875770).jpg
Guide to fingerprint identification

Dermatoglyphics (from Ancient Greek derma, "skin", and glyph , "carving") is the scientific study of fingerprints, lines, mounts and shapes of hands, as distinct from the superficially similar pseudoscience of palmistry.

Contents

Dermatoglyphics also refers to the making of naturally occurring ridges on certain body parts, namely palms, fingers, soles, and toes. These are areas where hair usually does not grow, and these ridges allow for increased leverage when picking up objects or walking barefoot.

In a 2009 report, the scientific basis underlying dermatoglyphics was questioned by the National Academy of Sciences, for the discipline's reliance on subjective comparisons instead of conclusions drawn from the scientific method. [1]

History

1823 marks the beginning of the scientific study of papillary ridges of the hands and feet, with the work of Jan Evangelista Purkyně. [2]

By 1858, Sir William Herschel, 2nd Baronet, while in India, became the first European to realize the value of fingerprints for identification.

Sir Francis Galton conducted extensive research on the importance of skin-ridge patterns, demonstrating their permanence and advancing the science of fingerprint identification with his 1892 book Fingerprints.

In 1893, Sir Edward Henry published the book The classification and uses of fingerprints, which marked the beginning of the modern era of fingerprint identification and is the basis for other classification systems.

In 1929, Harold Cummins and Charles Midlo M.D., together with others, published the influential book Fingerprints, Palms and Soles, a bible in the field of dermatoglyphics.

In 1945, Lionel Penrose, inspired by the works of Cummins and Midlo, conducted his own dermatoglyphic investigations as a part of his research into Down syndrome and other congenital medical disorders.

In 1976, Schaumann and Alter published the book Dermatoglyphics in Medical Disorders, which summarizes the findings of dermatoglyphic patterns under disease conditions.

In 1982, Seltzer, et al., conducted a study on patients with breast cancer, and concluded that the presence of six or more whorls on a woman's fingertips indicated her being at high risk for breast cancer.

Although the study of dermatoglyphics has some adjunctive value in the diagnosis of genetic syndromes (see examples below), there is insufficient evidence to indicate that there is any value in the examination of dermal ridge patterns for the diagnosis of disease or for identifying disease susceptibility.

Dermatoglyphics and genetic conditions

Dermatoglyphics, when correlated with genetic abnormalities, aids in the diagnosis of congenital malformations at birth or soon after.

Dermatoglyphics and Medical conditions

The relationship between different dermatoglyphic traits and various medical diseases have been widely evaluated.

Related Research Articles

<span class="mw-page-title-main">Finger</span> Organ of manipulation and sensation found in the hands of humans and other primates

A finger is a prominent digit on the forelimbs of most tetrapod vertebrate animals, especially those with prehensile extremities such as humans and primates. Most tetrapods have five digits (pentadactyly), and short digits are typically referred to as toes, while those that are notably elongated are called fingers. In humans, the fingers are flexibly articulated and opposable, serving as an important organ of tactile sensation and fine movements, which are crucial to the dexterity of the hands and the ability to grasp and manipulate objects.

<span class="mw-page-title-main">Fingerprint</span> Biometric identifier

A fingerprint is an impression left by the friction ridges of a human finger. The recovery of partial fingerprints from a crime scene is an important method of forensic science. Moisture and grease on a finger result in fingerprints on surfaces such as glass or metal. Deliberate impressions of entire fingerprints can be obtained by ink or other substances transferred from the peaks of friction ridges on the skin to a smooth surface such as paper. Fingerprint records normally contain impressions from the pad on the last joint of fingers and thumbs, though fingerprint cards also typically record portions of lower joint areas of the fingers.

<span class="mw-page-title-main">Digit ratio</span> Ratio of lengths of fingers

The digit ratio is the ratio taken of the lengths of different digits or fingers on a hand. In modern sciences, the 2D:4D ratio has become the most commonly studied digit ratio and is calculated by dividing the length of the index finger of a given hand by the length of the ring finger of the same hand. On average, males have a lower 2D:4D ratio than females.

<span class="mw-page-title-main">Polydactyly</span> Physical anomaly involving extra fingers or toes

Polydactyly or polydactylism, also known as hyperdactyly, is an anomaly in humans and animals resulting in supernumerary fingers and/or toes. Polydactyly is the opposite of oligodactyly.

<span class="mw-page-title-main">Median nerve</span> Nerve of the upper limb

The median nerve is a nerve in humans and other animals in the upper limb. It is one of the five main nerves originating from the brachial plexus.

<span class="mw-page-title-main">Patau syndrome</span> Chromosomal disorder in which there are three copies of chromosome 13

Patau syndrome is a syndrome caused by a chromosomal abnormality, in which some or all of the cells of the body contain extra genetic material from chromosome 13. The extra genetic material disrupts normal development, causing multiple and complex organ defects.

<span class="mw-page-title-main">Nail clubbing</span> Deformity of the finger or toe nails associated with a number of diseases

Nail clubbing, also known as digital clubbing or clubbing, is a deformity of the finger or toe nails associated with a number of diseases, mostly of the heart and lungs. When it occurs together with joint effusions, joint pains, and abnormal skin and bone growth it is known as hypertrophic osteoarthropathy.

<span class="mw-page-title-main">Arthrogryposis</span> Medical condition

Arthrogryposis (AMC) describes congenital joint contracture in two or more areas of the body. It derives its name from Greek, literally meaning 'curving of joints'.

<span class="mw-page-title-main">Single transverse palmar crease</span> Crease across the palm of the hand

In humans, a single transverse palmar crease is a single crease that extends across the palm of the hand, formed by the fusion of the two palmar creases. Although it is found more frequently in persons with several abnormal medical conditions, it is not predictive of any of these conditions since it is also found in persons with no abnormal medical conditions. It is found in 1.5% of the world population in at least one hand.

<span class="mw-page-title-main">Cri du chat syndrome</span> Human medical condition

Cri du chat syndrome is a rare genetic disorder due to a partial chromosome deletion on chromosome 5. Its name is a French term referring to the characteristic cat-like cry of affected children. It was first described by Jérôme Lejeune in 1963. The condition affects an estimated 1 in 50,000 live births across all ethnicities and is more common in females by a 4:3 ratio.

<span class="mw-page-title-main">Phalanx bone</span> Digital bone in the hands and feet of most vertebrates

The phalanges are digital bones in the hands and feet of most vertebrates. In primates, the thumbs and big toes have two phalanges while the other digits have three phalanges. The phalanges are classed as long bones.

<span class="mw-page-title-main">Atrioventricular septal defect</span> Medical condition

Atrioventricular septal defect (AVSD) or atrioventricular canal defect (AVCD), also known as "common atrioventricular canal" or "endocardial cushion defect" (ECD), is characterized by a deficiency of the atrioventricular septum of the heart that creates connections between all four of its chambers. It is a very specific combination of 3 defects:

Trisomy 8 causes Warkany syndrome 2, a human chromosomal disorder caused by having three copies (trisomy) of chromosome 8. It can appear with or without mosaicism.

Congenital limb deformities are congenital musculoskeletal disorders which primarily affect the upper and lower limbs.

<span class="mw-page-title-main">Hand</span> Extremity at the end of an arm or forelimb

A hand is a prehensile, multi-fingered appendage located at the end of the forearm or forelimb of primates such as humans, chimpanzees, monkeys, and lemurs. A few other vertebrates such as the koala are often described as having "hands" instead of paws on their front limbs. The raccoon is usually described as having "hands" though opposable thumbs are lacking.

<span class="mw-page-title-main">Hand-foot-genital syndrome</span> Medical condition

Hand-foot-genital syndrome (HFGS) is characterized by limb malformations and urogenital defects. Mild bilateral shortening of the thumbs and great toes, caused primarily by shortening of the distal phalanx and/or the first metacarpal or metatarsal, is the most common limb malformation and results in impaired dexterity or apposition of the thumbs. Urogenital abnormalities include abnormalities of the ureters and urethra and various degrees of incomplete Müllerian fusion in females and hypospadias of variable severity with or without chordee in males. Vesicoureteral reflux, recurrent urinary tract infections, and chronic pyelonephritis are common; fertility is normal.

<span class="mw-page-title-main">Ectrodactyly</span> Medical condition

Ectrodactyly, split hand, or cleft hand involves the deficiency or absence of one or more central digits of the hand or foot and is also known as split hand/split foot malformation (SHFM). The hands and feet of people with ectrodactyly (ectrodactyls) are often described as "claw-like" and may include only the thumb and one finger with similar abnormalities of the feet.

<span class="mw-page-title-main">Constriction ring syndrome</span> Medical condition

Constriction ring syndrome (CRS) is a congenital disorder with unknown cause. Because of the unknown cause there are many different, and sometimes incorrect names. It is a malformation due to intrauterine bands or rings that give deep grooves in, most commonly, distal extremities like fingers and toes. In rare cases the constriction ring can form around other parts of the fetus and cause amputation or even intrauterine death. The anatomy proximal to the site of constriction is developmentally normal. CRS can be associated with other malformations with club foot being most common. The precise configuration of the bands, lymphedema, and character of the amputations are not predictable and vary with each individual patient. Also, more than one extremity is usually affected, and it is rare for only one ring to present as an isolated malformation with no other manifestation of this syndrome.

<span class="mw-page-title-main">Palmar crease</span>

A palmar crease is a type of crease on the palm. A single transverse palmar crease also called simian crease is sometimes associated with Down syndrome. Other types of creases include the Sydney crease and the Suwon, or double transverse palmar crease.

Tel Hashomer camptodactyly syndrome is a rare genetic disorder which is characterized by camptodactyly,( a condition where one or more fingers or toes are permanently bent), facial dysmorphisms, and fingerprint, skeletal and muscular abnormalities. This disorder is thought to be inherited in an autosomal recessive fashion.

References

  1. National Research Council (2009). Strengthening Forensic Science: A Path Forward. Washington, DC: National Academies Press. doi:10.17226/12589. ISBN   978-0-309-13130-8.
  2. Grzybowski, Andrzej; Pietrzak, Krzysztof (2015). "Jan Evangelista Purkynje (1787-1869): first to describe fingerprints". Clinics in Dermatology . 33 (1): 117–121. doi:10.1016/j.clindermatol.2014.07.011. ISSN   1879-1131. PMID   25530005.
  3. Komatz Y, Yoshida O (1976). "Finger patterns and ridge counts of patients with Klinefelter's syndrome (47, XXY) among the Japanese". Hum Hered. 26 (4): 290–7. doi:10.1159/000152816. PMID   976997.
  4. Kajii, Tadashi; Homma, Takemi; Oikawa, Kiyoshi; Furuyama, Masayuki; Kawarazaki, Takashi (1 February 1966). "Cri du chat syndrome". Archives of Disease in Childhood . 41 (215): 97–101. doi:10.1136/adc.41.215.97. PMC   2019529 . PMID   5906633.
  5. Rodriguez-Caballero, Ángela; Torres-Lagares, Daniel; Rodriguez-Perez, Antonio; Serrera-Figallo, María-Ángeles; Hernandez-Guisado, José-María; Machuca-Portillo, Guillermo (2010). "Cri du chat syndrome: A critical review". Medicina Oral Patología Oral y Cirugia Bucal. 15 (3): e473–e478. doi: 10.4317/medoral.15.e473 . PMID   20038906.
  6. Viswanathan G, Singh H, Ramanujam P (2002). "Dermatoglyphic analysis of palmar print of blind children from Bangalore". J. Ecotoxicol. Environ. Monit. 12: 49–52. and excess of arches on fingertips.Viswanathan G, Singh H, Ramanujam P (2002). "[Dermatoglyphic analysis of fingertip print patterns of blind children from Bangalore.]". J. Ecotoxicol. Environ. Monit. 12: 73–75.
  7. Lugassy, Jennie; Itin, Peter; Ishida-Yamamoto, Akemi; Holland, Kristen; Huson, Susan; Geiger, Dan; Hennies, Hans Christian; Indelman, Margarita; Bercovich, Dani; Uitto, Jouni; Bergman, Reuven; McGrath, John A.; Richard, Gabriele; Sprecher, Eli (October 2006). "Naegeli-Franceschetti-Jadassohn Syndrome and Dermatopathia Pigmentosa Reticularis: Two Allelic Ectodermal Dysplasias Caused by Dominant Mutations in KRT14". The American Journal of Human Genetics . 79 (4): 724–730. doi:10.1086/507792. ISSN   0002-9297. OCLC   110008768. PMC   1592572 . PMID   16960809.
  8. Rott H, Schwanitz G, Reither M (1975). "[Dermatoglyphics in Noonan's syndrome (author's transl)]". Acta Genet Med Gemellol (Roma). 24 (1–2): 63–7. doi: 10.1017/s1120962300021892 . PMID   1224924.
  9. Schaumann, Blanka; Alter, Milton (1976). Dermatoglyphics in Medical Disorders. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 166–167. ISBN   9783642516207. OCLC   858928199.
  10. Hodes, M E; Cole, J; Palmer, C G; Reed, T (1 February 1978). "Clinical experience with trisomies 18 and 13". Journal of Medical Genetics . 15 (1): 48–60. doi:10.1136/jmg.15.1.48. PMC   1012823 . PMID   637922.
  11. Rajangam S, Janakiram S, Thomas I (1995). "Dermatoglyphics in Down's syndrome". J Indian Med Assoc. 93 (1): 10–3. PMID   7759898.
  12. Mglinets V (1991). "[Relationship between dermatoglyphic variability and finger length in genetic disorders: Down's syndrome]". Genetika. 27 (3): 541–7. PMID   1830282.
  13. Mglinets V, Ivanov V (1993). "[Bilateral symmetry of the dermatoglyphic characteristics in Down's syndrome]". Ontogenez. 24 (3): 98–102. PMID   8355961.
  14. Durham N, Koehler J (1989). "Dermatoglyphic indicators of congenital heart defects in Down's syndrome patients: a preliminary study". J Ment Defic Res. 33 (4): 343–8. doi:10.1111/j.1365-2788.1989.tb01485.x. PMID   2527997.
  15. Reed T, Reichmann A, Palmer C (1977). "Dermatoglyphic differences between 45,X and other chromosomal abnormalities of Turner syndrome". Hum Genet. 36 (1): 13–23. doi:10.1007/BF00390431. PMID   858621. S2CID   24603313.
  16. Padfield, C. J.; Partington, M. W.; Simpson, N. E. (1 February 1968). "The Rubinstein-Taybi syndrome". Archives of Disease in Childhood . 43 (227): 94–101. doi:10.1136/adc.43.227.94. ISSN   0003-9888. OCLC   104040715. PMC   2019897 . PMID   5642988.
  17. Fañanás, L; Moral, P; Bertranpetit, J (June 1990). "Quantitative dermatoglyphics in schizophrenia: study of family history subgroups". Human biology . 62 (3): 421–7. ISSN   0018-7143. OCLC   116604541. PMID   2373511.
  18. Wijerathne, Buddhika T. B.; Meier, Robert J.; Agampodi, Suneth B. (December 2016). "The status of dermatoglyphics as a biomarker of Tel Hashomer camptodactyly syndrome: a review of the literature". Journal of Medical Case Reports. 10 (1): 258. doi: 10.1186/s13256-016-1048-7 . ISSN   1752-1947. PMC   5030737 . PMID   27650795.
  19. Wijerathne, Buddhika T. B.; Meier, Robert J.; Agampodi, Thilini; Agampodi, Suneth B. (August 2015). "Dermatoglyphics in hypertension: a review". Journal of Physiological Anthropology. 34 (1): 29. doi: 10.1186/s40101-015-0065-3 . ISSN   1880-6805. PMC   4534102 . PMID   26265377.

Further reading