Patau syndrome

Last updated
Patau syndrome
Other namesTrisomy 13, trisomy D, T13 [1]
Congenital absence of nose.jpg
Infant with Patau syndrome showing cleft lip, reduction of nose, and hypotelorism (c.1912)
Pronunciation
Specialty Medical genetics
Usual onsetPresent at birth
CausesThird copy of chromosome 13
Treatment Supportive care
Prognosis Poor
Named after Klaus Patau

Patau syndrome is a syndrome caused by a chromosomal abnormality, in which some or all of the cells of the body contain extra genetic material from chromosome 13. The extra genetic material disrupts normal development, causing multiple and complex organ defects.

Contents

This can occur either because each cell contains a full extra copy of chromosome 13 (a disorder known as trisomy 13 or trisomy D or T13 [1] ), or because each cell contains an extra partial copy of the chromosome, or because there are two different lines of cells—one healthy with the correct number of chromosomes 13 and one that contains an extra copy of the chromosome—mosaic Patau syndrome. Full trisomy 13 is caused by nondisjunction of chromosomes during meiosis (the mosaic form is caused by nondisjunction during mitosis).

Like all nondisjunction conditions (such as Down syndrome and Edwards syndrome), the risk of this syndrome in the offspring increases with maternal age at pregnancy, with about 31 years being the average. [2] Patau syndrome affects somewhere between 1 in 10,000 and 1 in 21,700 live births. [3]

Signs and symptoms

Chromosome 13, the affected chromosome in this disease Chromosome 13.jpeg
Chromosome 13, the affected chromosome in this disease
Mild facies in Patau syndrome Trisomy 13-15 3.jpg
Mild facies in Patau syndrome
Six fingers in a baby with Patau syndrome HandTrisomy13.png
Six fingers in a baby with Patau syndrome

Of those fetuses that do survive to gestation and birth, common abnormalities may include:[ citation needed ]

Causes

Patau syndrome is the result of trisomy 13, meaning each cell in the body has three copies of chromosome 13 instead of the usual two. A small percentage of cases occur when only some of the body's cells have an extra copy; such cases are called mosaic trisomy 13.[ citation needed ]

Patau syndrome can also occur when part of chromosome 13 becomes attached to another chromosome (translocated) before or at conception in a Robertsonian translocation. Affected people have two copies of chromosome 13, plus extra material from chromosome 13 attached to another chromosome. With a translocation, the person has a partial trisomy for chromosome 13 and often the physical signs of the syndrome differ from the typical Patau syndrome.[ citation needed ]

Most cases of Patau syndrome are not inherited, but occur as random events during the formation of reproductive cells (eggs and sperm). An error in cell division called non-disjunction can result in reproductive cells with an abnormal number of chromosomes. For example, an egg or sperm cell may gain an extra copy of the chromosome. If one of these atypical reproductive cells contributes to the genetic makeup of a child, the child will have an extra chromosome 13 in each of the body's cells. Mosaic Patau syndrome is also not inherited. It occurs as a random error during cell division early in fetal development.[ citation needed ]

Patau syndrome due to a translocation can be inherited. An unaffected person can carry a rearrangement of genetic material between chromosome 13 and another chromosome. This rearrangement is called a balanced translocation because there is no extra material from chromosome 13. Although they do not have signs of Patau syndrome, people who carry this type of balanced translocation are at an increased risk of having children with the condition.[ citation needed ]

Recurrence risk

Unless one of the parents is a carrier of a translocation, the chances of a couple having another trisomy 13 affected child is less than 1%, below that of Down syndrome.[ citation needed ]

Diagnosis

Diagnosis is usually based on clinical findings, although fetal chromosome testing will show trisomy 13. While many of the physical findings are similar to Edwards syndrome, there are a few unique traits, such as polydactyly. However, unlike Edwards syndrome and Down syndrome, the quad screen does not provide a reliable means of screening for this disorder. This is due to the variability of the results seen in fetuses with Patau. [6]

Treatment

Medical management of children with Trisomy 13 is planned on a case-by-case basis and depends on the individual circumstances of the patient. Treatment of Patau syndrome focuses on the particular physical problems with which each child is born. Many infants have difficulty surviving the first few days or weeks due to severe neurological problems or complex heart defects. Surgery may be necessary to repair heart defects or cleft lip and cleft palate. Physical, occupational, and speech therapy will help individuals with Patau syndrome reach their full developmental potential. Surviving children are described as happy and parents report that they enrich their lives. [7]

Prognosis

Approximately 90% of infants with Patau syndrome die within the first year of life. [8] Those children who do survive past 1 year of life are typically severely disabled with intellectual disability, seizures, and psychomotor issues. Children with the mosaic variation are usually affected to a lesser extent. [9] In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively, including those who underwent aggressive surgical intervention. [10]

History

Trisomy 13 was first observed by Thomas Bartholin in 1657, [11] [12] but the chromosomal nature of the disease was ascertained by Dr. Klaus Patau and Dr. Eeva Therman in 1960. [13] The disease is named in Patau's honor.

In England and Wales during 2008–09, there were 172 diagnoses of Patau syndrome (trisomy 13), with 91% of diagnoses made prenatally. There were 111 elective abortions, 14 stillbirth/miscarriage/fetal deaths, 30 outcomes unknown, and 17 live births. Approximately 4% of Patau syndrome with unknown outcomes are likely to result in a live birth, therefore the total number of live births is estimated to be 18. [14]

Related Research Articles

<span class="mw-page-title-main">Autosome</span> Any chromosome other than a sex chromosome

An autosome is any chromosome that is not a sex chromosome. The members of an autosome pair in a diploid cell have the same morphology, unlike those in allosomal pairs, which may have different structures. The DNA in autosomes is collectively known as atDNA or auDNA.

<span class="mw-page-title-main">Trisomy</span> Abnormal presence of three copies of a particular chromosome

A trisomy is a type of polysomy in which there are three instances of a particular chromosome, instead of the normal two. A trisomy is a type of aneuploidy.

<span class="mw-page-title-main">Aneuploidy</span> Presence of an abnormal number of chromosomes in a cell

Aneuploidy is the presence of an abnormal number of chromosomes in a cell, for example a human cell having 45 or 47 chromosomes instead of the usual 46. It does not include a difference of one or more complete sets of chromosomes. A cell with any number of complete chromosome sets is called a euploid cell.

<span class="mw-page-title-main">Trisomy 18</span> Chromosomal disorder in which there are three copies of chromosome 18

Trisomy 18, also known as Edwards syndrome, is a genetic disorder caused by the presence of a third copy of all or part of chromosome 18. Many parts of the body are affected. Babies are often born small and have heart defects. Other features include a small head, small jaw, clenched fists with overlapping fingers, and severe intellectual disability.

<span class="mw-page-title-main">Nondisjunction</span> Failure to separate properly during cell division

Nondisjunction is the failure of homologous chromosomes or sister chromatids to separate properly during cell division (mitosis/meiosis). There are three forms of nondisjunction: failure of a pair of homologous chromosomes to separate in meiosis I, failure of sister chromatids to separate during meiosis II, and failure of sister chromatids to separate during mitosis. Nondisjunction results in daughter cells with abnormal chromosome numbers (aneuploidy).

<span class="mw-page-title-main">Prenatal testing</span> Testing for diseases or conditions in a fetus

Prenatal testing is a tool that can be used to detect some birth defects at various stages prior to birth. Prenatal testing consists of prenatal screening and prenatal diagnosis, which are aspects of prenatal care that focus on detecting problems with the pregnancy as early as possible. These may be anatomic and physiologic problems with the health of the zygote, embryo, or fetus, either before gestation even starts or as early in gestation as practicable. Screening can detect problems such as neural tube defects, chromosome abnormalities, and gene mutations that would lead to genetic disorders and birth defects, such as spina bifida, cleft palate, Down syndrome, trisomy 18, Tay–Sachs disease, sickle cell anemia, thalassemia, cystic fibrosis, muscular dystrophy, and fragile X syndrome. Some tests are designed to discover problems which primarily affect the health of the mother, such as PAPP-A to detect pre-eclampsia or glucose tolerance tests to diagnose gestational diabetes. Screening can also detect anatomical defects such as hydrocephalus, anencephaly, heart defects, and amniotic band syndrome.

<span class="mw-page-title-main">Robertsonian translocation</span> Human chromosomal abnormality

Robertsonian translocation (ROB) is a chromosomal abnormality where the entire long arms of two different chromosomes become fused to each other. It is the most common form of chromosomal translocation in humans, affecting 1 out of every 1,000 babies born. It does not usually cause medical problems, though some people may produce gametes with an incorrect number of chromosomes, resulting in a risk of miscarriage. In rare cases this translocation results in Down syndrome and Patau syndrome. Robertsonian translocations result in a reduction in the number of chromosomes. A Robertsonian evolutionary fusion, which may have occurred in the common ancestor of humans and other great apes, is the reason humans have 46 chromosomes while all other primates have 48. Detailed DNA studies of chimpanzee, orangutan, gorilla and bonobo apes has determined that where human chromosome 2 is present in our DNA in all four great apes this is split into two separate chromosomes typically numbered 2a and 2b. Similarly, the fact that horses have 64 chromosomes and donkeys 62, and that they can still have common, albeit usually infertile, offspring, may be due to a Robertsonian evolutionary fusion at some point in the descent of today's donkeys from their common ancestor.

<span class="mw-page-title-main">Small supernumerary marker chromosome</span> Abnormal partial or mixed chromosome

A small supernumerary marker chromosome (sSMC) is an abnormal extra chromosome. It contains copies of parts of one or more normal chromosomes and like normal chromosomes is located in the cell's nucleus, is replicated and distributed into each daughter cell during cell division, and typically has genes which may be expressed. However, it may also be active in causing birth defects and neoplasms. The sSMC's small size makes it virtually undetectable using classical cytogenetic methods: the far larger DNA and gene content of the cell's normal chromosomes obscures those of the sSMC. Newer molecular techniques such as fluorescence in situ hybridization, next generation sequencing, comparative genomic hybridization, and highly specialized cytogenetic G banding analyses are required to study it. Using these methods, the DNA sequences and genes in sSMCs are identified and help define as well as explain any effect(s) it may have on individuals.

<span class="mw-page-title-main">Chromosome 13</span> Human chromosome

Chromosome 13 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 13 spans about 113 million base pairs and represents between 3.5 and 4% of the total DNA in cells.

<span class="mw-page-title-main">Greig cephalopolysyndactyly syndrome</span> Medical condition

Greig cephalopolysyndactyly syndrome is a disorder that affects development of the limbs, head, and face. The features of this syndrome are highly variable, ranging from very mild to severe. People with this condition typically have one or more extra fingers or toes (polydactyly) or an abnormally wide thumb or big toe (hallux).

The Pallister–Killian syndrome (PKS), also termed tetrasomy 12p mosaicism or the Pallister mosaic aneuploidy syndrome, is an extremely rare and severe genetic disorder. PKS is due to the presence of an extra and abnormal chromosome termed a small supernumerary marker chromosome (sSMC). sSMCs contain copies of genetic material from parts of virtually any other chromosome and, depending on the genetic material they carry, can cause various genetic disorders and neoplasms. The sSMC in PKS consists of multiple copies of the short arm of chromosome 12. Consequently, the multiple copies of the genetic material in the sSMC plus the two copies of this genetic material in the two normal chromosome 12's are overexpressed and thereby cause the syndrome. Due to a form of genetic mosaicism, however, individuals with PKS differ in the tissue distributions of their sSMC and therefore show different syndrome-related birth defects and disease severities. For example, individuals with the sSMC in their heart tissue are likely to have cardiac structural abnormalities while those without this sSMC localization have a structurally normal heart.

<span class="mw-page-title-main">Genetics of Down syndrome</span>

Down syndrome is a chromosomal abnormality characterized by the presence of an extra copy of genetic material on chromosome 21, either in whole or part. The effects of the extra copy varies greatly from individual to individual, depending on the extent of the extra copy, genetic background, environmental factors, and random chance. Down syndrome can occur in all human populations, and analogous effects have been found in other species, such as chimpanzees and mice. In 2005, researchers have been able to create transgenic mice with most of human chromosome 21.

A chromosomal abnormality, chromosomal anomaly, chromosomal aberration, chromosomal mutation, or chromosomal disorder is a missing, extra, or irregular portion of chromosomal DNA. These can occur in the form of numerical abnormalities, where there is an atypical number of chromosomes, or as structural abnormalities, where one or more individual chromosomes are altered. Chromosome mutation was formerly used in a strict sense to mean a change in a chromosomal segment, involving more than one gene. Chromosome anomalies usually occur when there is an error in cell division following meiosis or mitosis. Chromosome abnormalities may be detected or confirmed by comparing an individual's karyotype, or full set of chromosomes, to a typical karyotype for the species via genetic testing.

<span class="mw-page-title-main">Triploid syndrome</span> Chromosomal disorder in which there are three copies of every chromosome

Triploid syndrome, also called triploidy, is a chromosomal disorder in which a fetus has three copies of every chromosome instead of the normal two. If this occurs in only some cells, it is called mosaic triploidy and is less severe.

Emanuel syndrome, also known as derivative 22 syndrome, or der(22) syndrome, is a rare disorder associated with multiple congenital anomalies, including profound intellectual disability, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional chromosomal translocation t(11;22)(q23;q11), owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. An unbalanced translocation between chromosomes 11 and 22 is described as Emanuel syndrome. It was first described in 1980 by American medical researchers Beverly S. Emanuel and Elaine H. Zackai, and a consortium of European scientists the same year.

<span class="mw-page-title-main">Trisomy 22</span> Medical condition

Trisomy 22 is a chromosomal disorder in which three copies of chromosome 22 are present rather than two. It is a frequent cause of spontaneous abortion during the first trimester of pregnancy. Progression to the second trimester and live birth are rare. This disorder is found in individuals with an extra copy or a variation of chromosome 22 in some or all cells of their bodies.

<span class="mw-page-title-main">Tetrasomy 9p</span> Presence of four copies of the short arm of chromosome 9

Tetrasomy 9p is a rare chromosomal disorder characterized by the presence of two extra copies of the short arm of chromosome 9, in addition to the usual two. Symptoms of tetrasomy 9p vary widely among affected individuals but typically include varying degrees of delayed growth, abnormal facial features and intellectual disability. Symptoms of the disorder are comparable to those of trisomy 9p.

<span class="mw-page-title-main">Young–Madders syndrome</span> Genetic disorder

Young–Madders syndrome, alternatively known as Pseudotrisomy 13 syndrome or holoprosencephaly–polydactyly syndrome, is a genetic disorder resulting from defective and duplicated chromosomes which result in holoprosencephaly, polydactyly, facial malformations and intellectual disability, with a significant variance in the severity of symptoms being seen across known cases. Many cases often suffer with several other genetic disorders, and some have presented with hypoplasia, cleft lip, cardiac lesions and other heart defects. In one case in 1991 and another in 2000 the condition was found in siblings who were the product of incest. Many cases are diagnosed prenatally and often in siblings. Cases are almost fatal in the prenatal stage with babies being stillborn.

<span class="mw-page-title-main">Pentasomy X</span> Chromosomal disorder

Pentasomy X, also known as 49,XXXXX, is a chromosomal disorder in which a female has five, rather than two, copies of the X chromosome. Pentasomy X is associated with short stature, intellectual disability, characteristic facial features, heart defects, skeletal anomalies, and pubertal and reproductive abnormalities. The condition is exceptionally rare, with an estimated prevalence between 1 in 85,000 and 1 in 250,000.

<span class="mw-page-title-main">Trisomy X</span> Chromosome disorder in women

Trisomy X, also known as triple X syndrome and characterized by the karyotype 47,XXX, is a chromosome disorder in which a female has an extra copy of the X chromosome. It is relatively common and occurs in 1 in 1,000 females, but is rarely diagnosed; fewer than 10% of those with the condition know they have it.

References

  1. 1 2 "Trisomy 13: description in brief". GOV.UK. December 2020.
  2. "Prevalence and Incidence of Patau syndrome". Diseases Center-Patau Syndrome. Adviware Pty Ltd. 2008-02-04. Retrieved 2008-02-17. mean maternal age for this abnormality is about 31 years
  3. About.com > Patau Syndrome (Trisomy 13) Archived 2016-03-04 at the Wayback Machine From Krissi Danielsson. Updated June 10, 2009
  4. H. Bruce Ostler (2004). Diseases of the eye and skin: a color atlas. Lippincott Williams & Wilkins. p. 72. ISBN   978-0-7817-4999-2 . Retrieved 13 April 2010.
  5. "Trisomy 13: MedlinePlus Medical Encyclopedia" . Retrieved 2010-04-12.
  6. Callahan, Tamara L., and Aaron B. Caughey. Blueprints Obstetrics & Gynecology. Baltimore, MD: Lippincott Williams & Wilkins, 2013.
  7. Janvier, Annie; Farlow, Wilfond (August 1, 2012). "The experience of families with children with trisomy 13 and 18 in social networks". Pediatrics. 130 (2): 293–298. doi:10.1542/peds.2012-0151. PMID   22826570. S2CID   5777839.
  8. Williams, G. M.; Brady, R. (2019). "Patau Syndrome". StatPearls. StatPearls. PMID   30855930.
  9. "Patau's Syndrome (Trisomy 13)". Archived from the original on 14 July 2014. Retrieved 3 July 2014.
  10. Nelson, Katherine E.; Rosella, Laura C.; Mahant, Sanjay; Guttmann, Astrid (2016). "Survival and Surgical Interventions for Children With Trisomy 13 and 18". JAMA. 316 (4): 420–8. doi: 10.1001/jama.2016.9819 . PMID   27458947 . Retrieved 3 December 2016.
  11. synd/1024 at Who Named It?
  12. Bartholinus, Thomas (1656). Historiarum anatomicarum rariorum centuria III et IV. Ejusdem cura accessere observationes anatomicae. The Hague: Vlacq. p. 95.
  13. Patau K, Smith DW, Therman E, Inhorn SL, Wagner HP (1960). "Multiple congenital anomaly caused by an extra autosome". Lancet. 1 (7128): 790–3. doi:10.1016/S0140-6736(60)90676-0. PMID   14430807.
  14. "National Down Syndrome Cytogenetic Register Annual Reports 2008/09". Archived from the original on 2010-04-15.