Optic nerve hypoplasia

Last updated
Optic nerve hypoplasia
Specialty Medical genetics   OOjs UI icon edit-ltr-progressive.svg

Optic nerve hypoplasia (ONH) is a medical condition arising from the underdevelopment of the optic nerve(s). This condition is the most common congenital optic nerve anomaly. The optic disc appears abnormally small, because not all the optic nerve axons have developed properly. [1] It is often associated with endocrinopathies (hormone deficiencies), developmental delay, and brain malformations. [2] The optic nerve, which is responsible for transmitting visual signals from the retina to the brain, has approximately 1.2 million nerve fibers in the average person. In those diagnosed with ONH, however, there are noticeably fewer nerves.

Contents

Symptoms

ONH may be found in isolation or in conjunction with myriad functional and anatomic abnormalities of the central nervous system. Nearly 80% of those affected with ONH will experience hypothalamic dysfunction and/or impaired development of the brain, regardless of MRI findings or severity of ONH. [3]

Vision

ONH can be unilateral (in one eye) or bilateral (in both eyes), though it presents most often bilaterally (80%). Unilateral cases tend to have better vision and are typically diagnosed at a later age than bilateral cases. Visual acuity can range from no light perception to near-normal vision.

Children diagnosed with ONH generally present with vision problems which include nystagmus (involuntary movement of the eyes), which tends to develop at 1 to 3 months and/or strabismus (inability to align both eyes simultaneously), manifested during the first year of life.

The majority of children affected experience improvement in vision during the first few years of life, though the reason for this occurrence is unknown. There have been no reported cases of decline in vision due to ONH.

Neuroradiographic abnormalities

Estimates of cerebral malformations vary from 39% to 90% of children with ONH. Abnormalities evident via neuroradiography can include agenesis (absence) or hypoplasia of the corpus callosum, absence or incomplete development of the septum pellucidum, malformations of the pituitary gland, schizencephaly, cortical heterotopia, white matter hypoplasia, pachygyria, and holoprosencephaly. Hypoplasia of the corpus callosum, often in conjunction with other major malformations, is significantly associated with poor and delayed developmental outcome. [4]

ONH is often referred to as septo-optic dysplasia, a term that refers to agenesis of the septum pellucidum. It is now clear that the absence of the septum pellucidum does not correlate with the associated symptoms of ONH. [3]

Hypothalamic dysfunction

Dysfunction of the hypothalamus results in loss of regulation over behavior and function of the pituitary gland (master gland). Hypopituitarism is present in 75% to 80% of patients with ONH. The anterior pituitary gland contributes to growth, metabolism, and sexual development. The most common pituitary endocrinopathies are growth hormone (GH) deficiency (70%), hypothyroidism (43%), adrenal insufficiency (27%), and diabetes insipidus (5%). [3] [4]

Absence of GH may often be indicated by short stature, although this is not always the case. Other indicators of GH deficiency may include hypoglycemic events (including seizures), prolonged jaundice, micropenis in boys, and delayed dentition. Testing for GH may involve blood tests (IGF-1 and IGFBP-3), growth hormone stimulation test, or bone age x-ray of the hand or wrist (or body for children younger than 2 years).

A poorly functioning pituitary gland may also cause a lack of thyroid hormone, leading to central hypothyroidism. Thyroid hormone is critical for growth and brain development, especially during the first few weeks to months of life. Children with untreated hypothyroidism are at high risk of mental retardation; thus, early detection is crucial. Central hypothyroidism can be diagnosed by a low or normal thyroid-stimulating hormone (TSH) in the presence of a low level of free T4. Free T-4 should be checked annually for at least four years. [3]

Cortisol is made in times of stress. Approximately one-quarter of patients with ONH have adrenal insufficiency, meaning they do not produce enough cortisol on a daily basis or in stressful situations. [5]

Imbalances in sex hormone may result in a delay in sexual development (puberty) or precocious puberty. Sex hormones may be tested from birth to 6 months of age (during mini-puberty).

Hyperprolactinemia (an excess of prolactin) often occurs in conjunction with ONH and indicates either dysfunction of the hypothalamus or a disconnect between the hypothalamus and pituitary gland. [6] Hyperprolactinemia often correlates with development of obesity in children with ONH. [3] [7]

The posterior pituitary gland produces anti-diuretic hormone (ADH), which controls outflow of water from the body by urine. ADH deficiency, also known as diabetes insipidus (DI), results in dehydration and high sodium levels in the body from excessive urination. Testing for DI involves blood and urine testing, including water deprivation tests, to determine ADH creation levels by the body. DI may be treated with a medication called desmopressin acetate (DDAVP). [5]

Oxytocin is also produced in the posterior pituitary gland. Though best known for its role in childbirth and lactation, oxytocin has also been found to have a role in human bonding, increase in trust, and decrease in fear.

Hypothalamic dysfunction may also result in problems with feeding, sleep, and body temperature regulation. Feeding behaviors in children with ONH often include hyperphagia (overeating), resulting in obesity; or hypophagia (reduced food intake) with or without weight loss. Children also frequently experience aversion to specific textures of food. Disturbance of circadian sleep rhythm, resulting in abnormal sleep-wake cycles, is noted in one-third of children with ONH. This disturbance could result in behavioral problems and disruption of family life. [3] [5]

Development

More than 70% of children with ONH experience developmental delay, ranging from isolated focal defects to delay in all areas of development (global delay). Motor delay is most common (75%) and communication delay is least common (44%). Predictors of significantly delayed development include hypoplasia or agenesis of the corpus callosum and hypothyroidism. The absence of the septum pellucidum does not predict developmental delay. Delays may occur in unilateral (39%) as well as bilateral (78%) cases. [3]

Cause

Genetic risks

Mutations of genes involved in transcription regulation, chromatin remodelling, α-dystroglycan glycosylation, cytoskeleton and scaffolding protein, RNA splicing, and the MAP kinase signalling pathway are currently known to cause ONH. [2] Many transcription factors for eye development are also involved in the morphogenesis of forebrain, which may explain why ONH is commonly a part of a syndrome involving brain malformations. [2]

ONH impacts all ethnic groups, although in the United States, occurrence is lower in persons of Asian descent. [3] [7] [4] To date, there have been few reports of ONH occurrence in Asian countries, although it is uncertain why this is so.

Gestational and exposure history

Although many perinatal and prenatal risk factors for ONH have been suggested, the predominant, enduring, most frequent risk factors are young maternal age and primiparity (the affected child being the first child born to the mother). [3] [8] Increased frequency of delivery by caesarean section and fetal/neonatal complications, preterm labor, gestational vaginal bleeding, low maternal weight gain, and weight loss during pregnancy are also associated with ONH. [7]

Diagnosis

ONH is diagnosed by ophthalmoscopic examination. Patients with ONH exhibit an optic nerve that appears smaller than normal and different in appearance from small optic nerves caused by other eye conditions such as optic (nerve) atrophy. [3]

DM:DD ratio has proven to be a clinically useful measurement to help diagnose optic nerve hypoplasia. [9] [10] [11] Where "DM" represents the distance from Disk to Macula, and "DD" represents Disc Diameter.

The mean disc diameter (DD) is (Vertical diameter of Disc+Horizontal diameter of Disc) divided by 2. The distance between the center of the disc and the macula is DM.

Interpretation: When the ratio of DM to DD is greater than 3, ONH is suspected, and when it is greater than 4, Optic Nerve Hypoplasia is definite. [11]

Treatment

There is no cure for ONH; however, many therapeutic interventions exist for the care of its symptoms. These may include hormone therapy for hypopituitarism, occupational, physical, and/or speech therapy for other issues, and services of a teacher for students with blindness/visually impairment. Special attention should be paid to early development of oral motor skills and acclimation to textured foods for children with texture aversion, or who are otherwise resistant to eating. [3]

Sleep dysfunction can be ameliorated using melatonin in the evening in order to adjust a child's circadian clock. [3]

Treatment for strabismus may include patching of the better eye, which may result in improved vision in the worse eye; however, this should be reserved for cases in which the potential for vision improvement in both eyes is felt to be good. Surgery to align the eyes can be performed once children with strabismus develop equal visual acuity in both eyes, most often after the age of three. Generally surgery results in improved appearance only and not in improved visual function. [3]

Prognosis

The visual prognosis in optic nerve hypoplasia is quite variable. Occasionally, optic nerve hypoplasia may be compatible with near-normal vision; in other cases, one or both eyes may be functionally, or legally blind. Although most patients with only optic nerve involvement lead normally productive lives, those with accompanying endocrine dysfunction or other midline cerebral abnormalities are more at risk for on-going intellectual and other disabilities.

Epidemiology

Optic nerve hypoplasia (ONH) is a congenital condition in which the optic nerve is underdeveloped (small). Many times, de Morsier’s Syndrome or septo-optic dysplasia (SOD) is associated with ONH, however, it is possible to have ONH without any additional issues like SOD. SOD is a condition that can involve multiple problems in the midline structures of the brain, stemming from miswiring of the brain and central nervous system. Besides having small optic nerves, persons with ONH can have agenesis of the corpus callosum, absence of the septum pellucidum, maldevelopment of the anterior and posterior pituitary gland, and anomalies of the hypothalamus. Because of this, all children with ONH are at risk for developmental delays and hormonal deficiencies, regardless of severity of ONH, or whether abnormalities are visible by MRI.

ONH is the single leading cause of permanent legal blindness in children in the western world. [12] The incidence of ONH is increasing, although it is difficult to estimate the true prevalence. Between 1980 and 1999, the occurrences of ONH in Sweden increased four-fold to 7.2 per 100,000, while all other causes of childhood blindness had declined. [3] [13] In 1997, ONH overtook retinopathy of prematurity as the single leading cause of infant blindness in Sweden, with 6.3 in every 100,000 births diagnosed with ONH. The most recent prevalence report out of England in 2006 is 10.9 per 100,000. [3] [14]

Related Research Articles

<span class="mw-page-title-main">Joubert syndrome</span> Medical condition

Joubert syndrome is a rare autosomal recessive genetic disorder that affects the cerebellum, an area of the brain that controls balance and coordination.

<span class="mw-page-title-main">Hypothyroidism</span> Insufficient production of thyroid hormones by the thyroid gland

Hypothyroidism is a disorder of the endocrine system in which the thyroid gland does not produce enough thyroid hormones. It can cause a number of symptoms, such as poor ability to tolerate cold, extreme fatigue, muscle aches, constipation, slow heart rate, depression, and weight gain. Occasionally there may be swelling of the front part of the neck due to goitre. Untreated cases of hypothyroidism during pregnancy can lead to delays in growth and intellectual development in the baby or congenital iodine deficiency syndrome.

<span class="mw-page-title-main">Colpocephaly</span> Medical condition

Colpocephaly is a cephalic disorder involving the disproportionate enlargement of the occipital horns of the lateral ventricles and is usually diagnosed early after birth due to seizures. It is a nonspecific finding and is associated with multiple neurological syndromes, including agenesis of the corpus callosum, Chiari malformation, lissencephaly, and microcephaly. Although the exact cause of colpocephaly is not known yet, it is commonly believed to occur as a result of neuronal migration disorders during early brain development, intrauterine disturbances, perinatal injuries, and other central nervous system disorders. Individuals with colpocephaly have various degrees of motor disabilities, visual defects, spasticity, and moderate to severe intellectual disability. No specific treatment for colpocephaly exists, but patients may undergo certain treatments to improve their motor function or intellectual disability.

<span class="mw-page-title-main">Septo-optic dysplasia</span> Medical condition

Septo-optic dysplasia (SOD), known also as de Morsier syndrome, is a rare congenital malformation syndrome that features a combination of the underdevelopment of the optic nerve, pituitary gland dysfunction, and absence of the septum pellucidum . Two or more of these features need to be present for a clinical diagnosis—only 30% of patients have all three. French-Swiss doctor Georges de Morsier first recognized the relation of a rudimentary or absent septum pellucidum with hypoplasia of the optic nerves and chiasm in 1956.

<span class="mw-page-title-main">Hypopituitarism</span> Medical condition

Hypopituitarism is the decreased (hypo) secretion of one or more of the eight hormones normally produced by the pituitary gland at the base of the brain. If there is decreased secretion of one specific pituitary hormone, the condition is known as selective hypopituitarism. If there is decreased secretion of most or all pituitary hormones, the term panhypopituitarism is used.

Aicardi syndrome is a rare genetic malformation syndrome characterized by the partial or complete absence of a key structure in the brain called the corpus callosum, the presence of retinal lacunes, and epileptic seizures in the form of infantile spasms. Other malformations of the brain and skeleton may also occur. The syndrome includes intellectual disability that is usually severe or moderate. So far, the syndrome has only been diagnosed in girls and in boys with two X chromosomes.

<span class="mw-page-title-main">Septum pellucidum</span> Thin membrane between the lateral ventricles of the brain

The septum pellucidum is a thin, triangular, vertical double membrane separating the anterior horns of the left and right lateral ventricles of the brain. It runs as a sheet from the corpus callosum down to the fornix.

<span class="mw-page-title-main">Coloboma</span> Hole in one of the structures of the eye

A coloboma is a hole in one of the structures of the eye, such as the iris, retina, choroid, or optic disc. The hole is present from birth and can be caused when a gap called the choroid fissure, which is present during early stages of prenatal development, fails to close up completely before a child is born. Ocular coloboma is relatively uncommon, affecting less than one in every 10,000 births.

<span class="mw-page-title-main">Uterine malformation</span> Female birth defect in which the uterus forms abnormally

A uterine malformation is a type of female genital malformation resulting from an abnormal development of the Müllerian duct(s) during embryogenesis. Symptoms range from amenorrhea, infertility, recurrent pregnancy loss, and pain, to normal functioning depending on the nature of the defect.

Agenesis of the corpus callosum (ACC) is a rare birth defect in which there is a complete or partial absence of the corpus callosum. It occurs when the development of the corpus callosum, the band of white matter connecting the two hemispheres in the brain, in the embryo is disrupted. The result of this is that the fibers that would otherwise form the corpus callosum are instead longitudinally oriented along the ipsilateral ventricular wall and form structures called Probst bundles.

<span class="mw-page-title-main">Hypoplasia</span> Underdevelopment of a tissue or organ

Hypoplasia is underdevelopment or incomplete development of a tissue or organ. Although the term is not always used precisely, it properly refers to an inadequate or below-normal number of cells. Hypoplasia is similar to aplasia, but less severe. It is technically not the opposite of hyperplasia. Hypoplasia is a congenital condition, while hyperplasia generally refers to excessive cell growth later in life.

Pachygyria is a congenital malformation of the cerebral hemisphere. It results in unusually thick convolutions of the cerebral cortex. Typically, children have developmental delay and seizures, the onset and severity depending on the severity of the cortical malformation. Infantile spasms are common in affected children, as is intractable epilepsy.

Pituitary apoplexy is bleeding into or impaired blood supply of the pituitary gland. This usually occurs in the presence of a tumor of the pituitary, although in 80% of cases this has not been diagnosed previously. The most common initial symptom is a sudden headache, often associated with a rapidly worsening visual field defect or double vision caused by compression of nerves surrounding the gland. This is often followed by acute symptoms caused by lack of secretion of essential hormones, predominantly adrenal insufficiency.

<span class="mw-page-title-main">1p36 deletion syndrome</span> Medical condition

1p36 deletion syndrome is a congenital genetic disorder characterized by moderate to severe intellectual disability, delayed growth, hypotonia, seizures, limited speech ability, malformations, hearing and vision impairment, and distinct facial features. The symptoms may vary, depending on the exact location of the chromosomal deletion.

<span class="mw-page-title-main">Young–Simpson syndrome</span> Medical condition

Young–Simpson syndrome (YSS) is a rare congenital disorder with symptoms including hypothyroidism, heart defects, facial dysmorphism, cryptorchidism in males, hypotonia, intellectual disability, and postnatal growth retardation.

Vici syndrome, also called immunodeficiency with cleft lip/palate, cataract, hypopigmentation and absent corpus callosum, is a rare autosomal recessive congenital disorder characterized by albinism, agenesis of the corpus callosum, cataracts, cardiomyopathy, severe psychomotor retardation, seizures, immunodeficiency and recurrent severe infections. To date, about 50 cases have been reported.

<span class="mw-page-title-main">Distal 18q-</span> Human disease

Distal 18q- is a genetic condition caused by a deletion of genetic material within one of the two copies of chromosome 18. The deletion involves the distal section of 18q and typically extends to the tip of the long arm of chromosome 18.

<span class="mw-page-title-main">Gómez–López-Hernández syndrome</span> Medical condition

Gómez–López-Hernández syndrome (GLH) or cerebellotrigeminal-dermal dysplasia is a rare neurocutaneous (Phakomatosis) disorder affecting the trigeminal nerve and causing several other neural and physical abnormalities. Gómez–López-Hernández syndrome has been diagnosed in only 34 people. Cases of Gómez–López-Hernández syndrome may be under-reported as other diseases share the characteristics of cerebellar malformation shown in Gómez–López-Hernández syndrome. Gómez–López-Hernández syndrome was first characterized in 1979.

Proud syndrome is a very rare genetic disorder which is characterized by severe intellectual disabilities, corpus callosum agenesis, epilepsy, and spasticity. It is a type of syndromic X-linked intellectual disability.

<span class="mw-page-title-main">Hypothyroidism in dogs</span> Medical condition

Hypothyroidism is an endocrine disorder in which the thyroid gland fails to produce sufficient thyroid hormones. Hypothyroidism is one of the most common endocrinopathies in dogs. It is either acquired or congenital.

References

  1. Sadun, Alfredo A., and Michelle Y. Wang. Handbook of Clinical Neurology. p. 37. In press.
  2. 1 2 3 Chen, Chun-An; Yin, Jiani; Lewis, Richard Alan; Schaaf, Christian P (July 2017). "Genetic causes of optic nerve hypoplasia". Journal of Medical Genetics. 54 (7): 441–449. doi: 10.1136/jmedgenet-2017-104626 . PMID   28501829.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Borchert, Mark; Garcia-Filion, Pamela (September 2008). "The syndrome of optic nerve hypoplasia". Current Neurology and Neuroscience Reports. 8 (5): 395–403. doi:10.1007/s11910-008-0061-7. PMID   18713575. S2CID   15580023.
  4. 1 2 3 Garcia-Filion, Pamela; Epport, Karen; Nelson, Marvin; Azen, Colleen; Geffner, Mitchell E.; Fink, Cassandra; Borchert, Mark (1 March 2008). "Neuroradiographic, Endocrinologic, and Ophthalmic Correlates of Adverse Developmental Outcomes in Children With Optic Nerve Hypoplasia: A Prospective Study". Pediatrics. 121 (3): e653–e659. doi:10.1542/peds.2007-1825. PMID   18250116. S2CID   39033017.
  5. 1 2 3 Ratner Kaufman, Francine, Neal Kaufman, Mark Borchert, and Talia Inlender. Optic Nerve Hypoplasia: A Guide for Parents. Los Angeles. Print.[ page needed ]
  6. Borchert, Mark and Pamela Garcia-Filion
  7. 1 2 3 Ahmad, Tariq; Garcia-Filion, Pamela; Borchert, Mark; Kaufman, Francine; Burkett, Linda; Geffner, Mitchell (1 January 2006). "Endocrinological and Auxological Abnormalities in Young Children with Optic Nerve Hypoplasia: A Prospective Study". The Journal of Pediatrics. 148 (1): 78–84. doi:10.1016/j.jpeds.2005.08.050. PMID   16423602.
  8. Tornqvist, Kristina; Ericsson, Anders; Källén, Bengt (June 2002). "Optic nerve hypoplasia: Risk factors and epidemiology: Acta Ophthalmologica Scandinavica 2002". Acta Ophthalmologica Scandinavica. 80 (3): 300–304. doi: 10.1034/j.1600-0420.2002.800313.x . PMID   12059870. S2CID   29965101.
  9. Zeki, S M; Dudgeon, J; Dutton, G N (1 September 1991). "Reappraisal of the ratio of disc to macula/disc diameter in optic nerve hypoplasia". British Journal of Ophthalmology. 75 (9): 538–541. doi:10.1136/bjo.75.9.538. PMC   1042469 . PMID   1911656.
  10. Alvarez, Emilio; Wakakura, Masato; Khan, Zia; Dutton, Gordon N (May 1988). "The Disc-Macula Distance to Disc Diameter Ratio: A New Test for Confirming Optic Nerve Hypoplasia in Young Children". Journal of Pediatric Ophthalmology & Strabismus. 25 (3): 151–154. doi:10.3928/0191-3913-19880501-11. PMID   3397860.
  11. 1 2 Dutton, G N (November 2004). "Congenital disorders of the optic nerve: excavations and hypoplasia". Eye. 18 (11): 1038–1048. doi: 10.1038/sj.eye.6701545 . PMID   15534588.
  12. Ryabets-Lienhard, Anna; Stewart, Carly; Borchert, Mark; Geffner, Mitchell E. (August 2016). "The Optic Nerve Hypoplasia Spectrum". Advances in Pediatrics. 63 (1): 127–146. doi:10.1016/j.yapd.2016.04.009. PMID   27426898.
  13. Blohmé, Jonas; Bengtsson-Stigmar, Elisabeth; Tornqvist, Kristina (August 2000). "Visually impaired Swedish children. Longitudinal comparisons 1980-1999". Acta Ophthalmologica Scandinavica. 78 (4): 416–420. doi: 10.1034/j.1600-0420.2000.078004416.x . PMID   10990043.
  14. Patel, Leena; McNally, Richard J. Q.; Harrison, Elizabeth; Lloyd, I. Christopher; Clayton, Peter E. (1 January 2006). "Geographical Distribution of Optic Nerve Hypoplasia and Septo-optic Dysplasia in Northwest England". The Journal of Pediatrics. 148 (1): 85–88. doi:10.1016/j.jpeds.2005.07.031. PMID   16423603.