Childhood blindness | |
---|---|
Snellen chart used to determine visual acuity | |
Causes | Genetic disorder, Infection [1] |
Diagnostic method | Pupillary reflex(among others) [2] |
Prevention | Vitamin A supplement |
Childhood blindness is an important contribution to the national prevalence of the disability of blindness. [3] Blindness in children can be defined as a visual acuity of <3/60 in the eye with better vision of a child under 16 years of age. [4] This generally means that the child cannot see an object 10 feet (about 3 meters) away, that another child could see if it was 200 feet (about 60 meters) away. [5]
There are many causes of blindness in children. Blindness may be due to genetic mutations, birth defects, premature birth, nutritional deficiencies, infections, injuries, and other causes. Severe retinopathy of prematurity (ROP), cataracts, Vitamin A deficiency, measles, conjunctivitis and refractive error are also causes. [6] [7]
Vitamin A deficiency is most common in developing countries where many kids experience malnourishment. This vitamin deficiency blinds hundreds of thousands of kids each year, and is a preventable cause of childhood blindness. Since vitamin A is required for rhodopsin, the photosensitive pigment in the retinol rods, its deficiency can lead to night blindness. [8]
Since 2010, globally 85% of children have been vaccinated for measles significantly reducing the number of measles cases each year. Children who have a vitamin A deficiency and measles infection can develop corneal ulcerations and keratomalacia due to immunosuppression caused by the vitamin deficiency. [8]
Newborn conjunctivitis is present at the time of birth and presents within the first 28 days of life as a severe conjunctival infection with purulent discharge. This increases the risk of corneal ulcerations and perforations that can lead to blindness. The common organisms that lead to this diagnosis include Neisseria gonorrhoea and Chlamydia trachomatis. Infected pregnant women and their partners should be treated to avoid infection of the newborn, and newborns presenting with conjunctivitis should be treated with hourly topical antibiotic drops (gentamicin). [8]
Retinopathy of Prematurity (ROP) is classified by the abnormal growth of blood vessels in the retina, a process called retinal neovascularization. [9] These blood vessels may bleed or grow in the wrong direction. Bleeding can lead to the formation of scar tissue which can cause blurred vision and vision loss. If the vessels grow too far in the wrong direction, they can pull the retina away from the back of the eye – this is called retinal detachment. Retinal detachment is a medical emergency that can cause permanent blindness and thus requires urgent intervention. [10]
Babies who are born prematurely (formally defined as 37 weeks of gestational age or earlier) are at higher risk of developing retinopathy of prematurity. The earlier a preterm baby is born, the greater the baby's risk of developing ROP. Blood vessels in the eye typically finish development by the time of birth. Therefore, a baby who is born early is exposed to various stimuli (oxygen, lights, temperature, etc.) that may influence how the blood vessels of the eye develop. Additional risk factors for ROP include low birth weight (3 pounds or less) and giving the baby excess amounts of oxygen following birth. If preterm infants are experiencing other health problems like anemia, vitamin E deficiency, and/or breathing problems, they are at increased risk of developing ROP. [11]
Childhood blindness has many causes. [12] Leading causes include retinopathy of prematurity, vitamin A deficiency, infectious diseases (measles, newborn conjunctivitis), retinoblastoma, and congenital conditions (cataracts and glaucoma). [13] Leber congenital amaurosis primarily affects the retina, and typically severe visual impairment begins in infancy. Mutations in Aryl hydrocarbon receptor interacting protein like-1 have been linked to Leber congenital amaurosis (LCA). [14]
The most frequently affected parts of the eyes are: [15] [16]
The diagnosis of childhood blindness is done via methods to ascertain the degree of visual impairment in the affected child. Early detection is essential to provide early intervention to children. The American Academy of Ophthalmology recommend various screening methods starting in newborns and spanning throughout childhood in order to assess for childhood blindness and other ophthalmic disorders. Newborns are screened with the red reflex test performed by shining a light into the child's eyes. If a red reflex is not produced, further workups should be done to assess for congenital cataracts or retinoblastoma. From 6-12 months, children are screened at their well-child visits with the red reflex test, assessment of eye movement, and proper pupil dilation. From 1 year to 3 years of age, children often undergo a "photoscreening" test where a camera takes pictures of the child's eyes to assess for developmental abnormalities that may lead to amblyopia. Children ages 3 to 5 years of age will be assessed for proper eye alignment and visual acuity. Visual acuity is assessed with a Snellen chart with lines of letters that the child reads and helps determine visual acuity. [17]
Vitamin A deficiency is a leading cause of preventable childhood blindness, particularly in developing countries. Vitamin A deficiency is defined as a serum (blood) concentration of less than 0.70 μmol/L while a severe deficiency is defined as less than 0.35 μmol/L, per the Centers of Disease Control National Health and Nutrition Examination Survey. [18] Vitamin A is supplied through the diet, and a deficiency often results from poor dietary intake of Vitamin A-rich foods. [19] Low dietary levels of Vitamin A can be worsened by infections that cause inflammation in the gastrointestinal tract, which prevent the body from fully absorbing Vitamin A available within digested food. Children in the United States have a recommended Vitamin A dietary allowance of at least 300 micrograms/day. [19] Good sources of Vitamin A include vegetables, such as carrots, papaya, and pumpkin. [20] Animal products, such as fish oils, as well as dairy products (milk, cheese, and yogurt) are also sources of Vitamin A. [20]
Retinopathy of prematurity (ROP) is a cause of childhood blindness that can occur around the time of birth. Generally, measures taken to avoid preterm birth are also effective at preventing ROP. Babies delivered preterm, defined at or before 37 weeks of gestation, have incomplete development of the blood vessels supplying the retina. [21] At birth, increased exposure to oxygen from the environment and from medical interventions (such as a high flow nasal cannula) causes damage to retinal blood vessels and stunts their growth. Prevention of ROP in preterm babies involves careful monitoring of oxygen delivery to avoid excess exposure. [22] Neonatal ocular exams can help detect ROP. [23]
Whether blindness is treatable depends upon the cause. [24] Surgical intervention can be performed in cases of primary congenital glaucoma. A 2020 review found no difference between combined trabeculotomy and trabeculectomy (CTT) and routine conventional trabeculotomy, or between visco-trabeculotomy and routine conventional trabeculotomy. The review also found that the 360-degree circumferential trabeculotomy may show greater surgical success than conventional trabeculotomy but that further research with one year follow-up was needed. [25]
Braille is a universal way to learn how to read and write, for the blind. [26] A refreshable braille display is an assistive learning device that can help such children in school. [27] Schools for the blind are a form of management, however the limitations of using studies done in such schools has been recognized. Children that are enrolled presently usually developed blindness 5 or more years prior to enrollment, consequently not reflecting current possible causes. [28] About 66% of children with visual impairment also have one other disability (comorbidity), be it, intellectual disabilities, cerebral palsy, or hearing loss. [29] Eye care/screening for children within primary health care is important, as catching ocular disease issues can lead to better outcomes overall. [30]
Globally, the number children with blindness is approximately 1.4 million, representing 4% of the global blind population, and an additional 17.5 million are at risk of developing poor vision. [31] Although this number is significantly lower than the number of blind adults, the estimated economic and social burden of blindness for children is much greater due to the increase in blind years. Childhood blindness is most prevalent among children with genetic ancestry from Africa and Asia, who represent 75% of the world's affected population. [13] [32] A 2014 review indicated that an estimated 238,500 children with bilateral blindness (rate 1.2/1,000) live in the Eastern Mediterranean region. [30] There is also an increase in blindness outside of developing countries due to a lack of screening and prophylactic measures to treat causes of pediatric blindness. [33]
VISION 2020 is a program launched by the International Agency for the Prevention of Blindness (IAPB) and is supported by the WHO in 1999 that has made controlling blindness in children a high priority. [34] In addition, the IAPB and WHO coordinate "World Sight Day" on the second Thursday of October each year. [35] Starting in 2000, World Sight Day has become an opportunity to raise awareness of eye health and highlight the importance of increasing access to eye health services globally. It has also become a tool to influence governments around the world to allocate funds for blindness prevention programs and educational initiatives.
Retinopathy is any damage to the retina of the eyes, which may cause vision impairment. Retinopathy often refers to retinal vascular disease, or damage to the retina caused by abnormal blood flow. Age-related macular degeneration is technically included under the umbrella term retinopathy but is often discussed as a separate entity. Retinopathy, or retinal vascular disease, can be broadly categorized into proliferative and non-proliferative types. Frequently, retinopathy is an ocular manifestation of systemic disease as seen in diabetes or hypertension. Diabetes is the most common cause of retinopathy in the U.S. as of 2008. Diabetic retinopathy is the leading cause of blindness in working-aged people. It accounts for about 5% of blindness worldwide and is designated a priority eye disease by the World Health Organization.
Retinitis pigmentosa (RP) is a member of a group of genetic disorders called inherited retinal dystrophy (IRD) that cause loss of vision. Symptoms include trouble seeing at night and decreasing peripheral vision. As peripheral vision worsens, people may experience "tunnel vision". Complete blindness is uncommon. Onset of symptoms is generally gradual and often begins in childhood.
The National Eye Institute (NEI) is part of the U.S. National Institutes of Health (NIH), an agency of the U.S. Department of Health and Human Services. The mission of NEI is "to eliminate vision loss and improve quality of life through vision research." NEI consists of two major branches for research: an extramural branch that funds studies outside NIH and an intramural branch that funds research on the NIH campus in Bethesda, Maryland. Most of the NEI budget funds extramural research.
Retinopathy of prematurity (ROP), also called retrolental fibroplasia (RLF) and Terry syndrome, is a disease of the eye affecting prematurely born babies generally having received neonatal intensive care, in which oxygen therapy is used because of the premature development of their lungs. It is thought to be caused by disorganized growth of retinal blood vessels and may result in scarring and retinal detachment. ROP can be mild and may resolve spontaneously, but it may lead to blindness in serious cases. Thus, all preterm babies are at risk for ROP, and very low birth-weight is an additional risk factor. Both oxygen toxicity and relative hypoxia can contribute to the development of ROP.
This is a partial list of human eye diseases and disorders.
Retinal detachment is a condition where the retina pulls away from the tissue underneath it. It may start in a small area, but without quick treatment, it can spread across the entire retina, leading to serious vision loss and possibly blindness. Retinal detachment is a medical emergency that requires surgery.
Xerophthalmia is a medical condition in which the eye fails to produce tears. It may be caused by vitamin A deficiency, which is sometimes used to describe that condition, although there may be other causes.
Retinal hemorrhage is a disorder of the eye in which bleeding occurs in the retina, the light sensitive tissue, located on the back wall of the eye. There are photoreceptor cells in the retina called rods and cones, which transduce light energy into nerve signals that can be processed by the brain to form visual images. Retinal hemorrhage is strongly associated with child abuse in infants and young children and often leaves such abused infants permanently blind. In older children and adults, retinal hemorrhage can be caused by several medical conditions such as hypertension, retinal vein occlusion, anemia, leukemia or diabetes.
Electroretinography measures the electrical responses of various cell types in the retina, including the photoreceptors, inner retinal cells, and the ganglion cells. Electrodes are placed on the surface of the cornea or on the skin beneath the eye to measure retinal responses. Retinal pigment epithelium (RPE) responses are measured with an EOG test with skin-contact electrodes placed near the canthi. During a recording, the patient's eyes are exposed to standardized stimuli and the resulting signal is displayed showing the time course of the signal's amplitude (voltage). Signals are very small, and typically are measured in microvolts or nanovolts. The ERG is composed of electrical potentials contributed by different cell types within the retina, and the stimulus conditions can elicit stronger response from certain components.
Amaurosis is vision loss or weakness that occurs without an apparent lesion affecting the eye. It may result from either a medical condition or excess acceleration, as in flight. The term is the same as the Latin gutta serena, which means, in Latin, clear drop. Gutta serena is a condition of partial or complete blindness with a transparent, clear pupil. This term contrasts with suffusio nigra which means, in Latin, dark suffusion, indicating partial or complete blindness with a dark pupil, e.g., a cataract. Milton, already totally blind for twelve years by the time he published Paradise Lost, refers to these terms in Book 3, lines 25–26.
Norrie disease is a rare X-linked recessive genetic disorder that primarily affects the eyes and almost always leads to blindness. It is caused by mutations in the Norrin cystine knot growth factor gene, also referred to as Norrie Disease Pseudoglioma (NDP) gene. Norrie disease manifests with vision impairment either at birth, or within a few weeks of life, following an ocular event like retinal detachment and is progressive through childhood and adolescence. It generally begins with retinal degeneration, which occurs before birth and results in blindness at birth (congenital) or early infancy, usually by 3 months of age.
Visual or vision impairment is the partial or total inability of visual perception. In the absence of treatment such as corrective eyewear, assistive devices, and medical treatment, visual impairment may cause the individual difficulties with normal daily tasks, including reading and walking. The terms low vision and blindness are often used for levels of impairment which are difficult or impossible to correct and significantly impact daily life. In addition to the various permanent conditions, fleeting temporary vision impairment, amaurosis fugax, may occur, and may indicate serious medical problems.
Choroideremia is a rare, X-linked recessive form of hereditary retinal degeneration that affects roughly 1 in 50,000 males. The disease causes a gradual loss of vision, starting with childhood night blindness, followed by peripheral vision loss and progressing to loss of central vision later in life. Progression continues throughout the individual's life, but both the rate of change and the degree of visual loss are variable among those affected, even within the same family.
Neovascularization is the natural formation of new blood vessels, usually in the form of functional microvascular networks, capable of perfusion by red blood cells, that form to serve as collateral circulation in response to local poor perfusion or ischemia.
Eales disease is a type of obliterative vasculopathy, also known as angiopathia retinae juvenilis, periphlebitis retinae or primary perivasculitis of the retina. It was first described by the British ophthalmologist Henry Eales (1852–1913) in 1880 and is a rare ocular disease characterized by inflammation and possible blockage of retinal blood vessels, abnormal growth of new blood vessels (neovascularization), and recurrent retinal and vitreal hemorrhages.
Blurred vision is an ocular symptom where vision becomes less precise and there is added difficulty to resolve fine details.
Congenital blindness refers to blindness present at birth. Congenital blindness is sometimes used interchangeably with "Childhood Blindness." However, current literature has various definitions of both terms. Childhood blindness encompasses multiple diseases and conditions present in ages up to 16 years old, which can result in permanent blindness or severe visual impairment over time. Congenital blindness is a hereditary disease and can be treated by gene therapy. Visual loss in children or infants can occur either at the prenatal stage or postnatal stage. There are multiple possible causes of congenital blindness. In general, 60% of congenital blindness cases are contributed from prenatal stage and 40% are contributed from inherited disease. However, most of the congenital blindness cases show that it can be avoidable or preventable with early treatment.
Leona Ruth Hurwitz Zacharias was an American biologist and medical researcher whose career spanned several prestigious institutions and diverse fields. She’s best known for her part in pioneering research on retrolental fibroplasia (RLF), now known as retinopathy of prematurity (ROP), which causes incurable blindness in the smallest premature infants. Her work was instrumental in identifying the primary causes of ROP, leading to radically improved neonatal care and outcomes. Zacharias also made substantial contributions to the understanding of human maturation, as measured by, the onset of menstruation and its variability in adolescent girls.
Cancer Associated Retinopathy (CAR) also known as Carcinoma Associated Retinopathy is an immune-mediated disease affecting the retina of the eye. It is a paraneoplastic type autoimmune retinopathy associated with cancer that can cause blindness. It can be seen in association with various types of cancers. It can be treated with a combination of chemotherapy and immunosuppression.
Drug abuse retinopathy is damage to the retina of the eyes caused by chronic drug abuse. Types of retinopathy caused by drug abuse include maculopathy, Saturday night retinopathy, and talc retinopathy. Common symptoms include temporary and permanent vision loss, blurred vision, and night blindness. Substances commonly associated with this condition include poppers, heroin, cocaine, methamphetamine, tobacco, and alcohol.