1q21.1 duplication syndrome

Last updated
1q21.1 duplication syndrome
Other names1q21.1 (recurrent) microduplication
Autosomal dominant - en.svg
1q21.1 duplication syndrome is inherited in an autosomal dominant manner
Specialty Medical genetics   OOjs UI icon edit-ltr-progressive.svg

1q21.1 duplication syndrome or 1q21.1 (recurrent) microduplication is a rare aberration of chromosome 1.[ citation needed ]

Contents

On chromosome 1, a human cell typically has one pair of identical chromosomes. One copy of chromosome 1 in the 1q21.1 duplication syndrome is overcomplete because a portion of its sequence has been duplicated twice or more. The letters 1q21.1 stand for chromosome 1, q for the long arm of the chromosome, and 21.1 for the portion of the long arm that contains the duplication.[ citation needed ]

Next to the duplication syndrome, there is also a 1q21.1 deletion syndrome. While there are two or three copies of a similar part of the DNA on a particular spot with the duplication syndrome, there is a part of the DNA missing with the deletion syndrome on the same spot. Literature refers to both the deletion and the duplication as the 1q21.1 copy-number variations (CNV).[ citation needed ]

The CNV leads to a very variable phenotype and the manifestations in individuals are quite variable. Some people who have the syndrome can function in a normal way, while others have symptoms of developmental delays and various physical anomalies.[ citation needed ]

Symptoms and signs

Currently recognized symptoms include:[ citation needed ]

It is not clear whether the list of symptoms is complete. Very little information is known about the syndrome. The symptomology may be different among individuals, even in the same family.[ citation needed ]

Cause

Meiosis is the process of dividing cells in humans. In meiosis, the chromosome pairs split and a representative of each pair goes to one daughter cell. In this way the number of chromosomes will be halved in each cell, while all the parts on the chromosome (genes) remain, after being randomized. Which information of the parent cell ends up in the daughter cell is purely decided by chance. Besides this random process, there is a second random process. In this second random process the DNA will be scrambled in a way that pieces are omitted (deletion), added (duplication), moved from one place to another (translocation) and inverted (inversion). This is a common process, which leads to about 0.4% variation in the DNA. It explains why even identical twins are not genetically 100% identical.[ citation needed ]

The second random process can give rise to genetic mistakes. In the deletion and duplication process, the chromosomes that come together in a new cell may be shorter or longer. The result of this spontaneous change in the structure of DNA is a copy number variation. Due to the copy number variation chromosomes of different sizes can be combined in a new cell. If this occurs around conception, there is the first cell of a human with a genetic variation. This can be either positive or negative. In positive cases this new human will be capable of a special skill that is assessed positively, for example, sports or science. In negative cases, you have to deal with a syndrome or a severe disability, as in this case the 1q21.1 duplication syndrome.[ citation needed ]

Based on the meiotic process, the syndrome may occur in two ways.[ citation needed ]

Due to this genetic misprint the embryo may experience problems in the development during the first months of pregnancy. Approximately 20 to 40 days after fertilization, something goes wrong in the construction of the body parts and brain, which leads to a chain reaction. [1]

Structure of 1q21.1

The structure of 1q21.1 Chromosome 1 to 1q21.1.jpg
The structure of 1q21.1

The structure of 1q21.1 is complex. The area has a size of approximately 6 Megabase (Mb) (from 141.5 Mb to 147.9 Mb). Within 1q21.1 there are two areas where a duplication or deletion can be found: the TAR-area for the TAR syndrome and the distal area for other anomalies. The 1q21.1 duplication syndrome will commonly be found in the distal area, but an overlap with the TAR-area is possible. 1q21.1 has multiple repetitions of the same structure (areas with the same color in the picture have equal structures) Only 25% of the structure is unique. There are several gaps in the sequence. There is no further information available about the DNA-sequence in those areas up until now. The gaps represent approximately 700 Kilobase. New genes are expected in the gaps. Because the gaps are still a topic of research, it is hard to find the exact start and end markers of a deletion. The area of 1q21.1 is one of the most difficult parts of the human genome to map.[ citation needed ]

Genes related to 1q21.1 deletion in the TAR area are HFE2, TXNIP, POLR3GL, LIX1L, RBM8A, PEX11B, ITGA10, ANKRD35, PIAS3, NUDT17, POLR3C, RNF115, CD160, PDZK1, and GPR89A [ citation needed ]
Genes related to 1q21.1 deletion in the distal area are HYDIN2, PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, GJA8, and GPR89B.[ citation needed ]

Diagnostics

A 'de novo'-situation appears in about 75% of the cases. In 25% of the cases, one of the parents is carrier of the syndrome, without any effect on the parent. Sometimes adults have mild problems with the syndrome. To find out whether either of the parents carries the syndrome, both parents have to be tested. In several cases, the syndrome was identified with the child, because of an autism disorder or another problem, and later it appeared that the parent was affected as well. The parent never knew about it until the moment that the DNA-test proved the parent to be a carrier.[ citation needed ]

In families where both parents have been tested negative on the syndrome, chances on a second child with the syndrome are extremely low. If the syndrome was found in the family, chances on a second child with the syndrome are 50%, because the syndrome is autosomal dominant. The effect of the syndrome on the child cannot be predicted.[ citation needed ]

The syndrome can be detected with fluorescence in situ hybridization and Affymetrix GeneChip Operating Software.For parents with a child with the syndrome, it is advisable to consult a physician before a next pregnancy and to do prenatal screening.[ citation needed ]

Management

Research

Several researchers around the world are studying on the subject of 1q21.1 duplication syndrome. The syndrome was identified for the first time in people with heart abnormalities. The syndrome was later observed in patients who had autism or schizophrenia.[ citation needed ]

It appears that there is a relation between autism and schizophrenia. Literature shows that nine locations have been found on the DNA where the syndromes related to autism or schizophrenia can be found, the so-called "hotspots": 1q21.1, 3q29, 15q13.3, 16p11.2, 16p13.1, 16q21, 17p12, 21q11.2 and 21q13.3. With a number of hotspots, either autism and schizophrenia were observed depending on the copy-number variation (CNV) at that location.[ citation needed ]

Statistical research showed that schizophrenia is significantly more common in combination with 1q21.1 deletion syndrome. On the other side, autism is significantly more common with 1q21.1 duplication syndrome. Similar observations were done for chromosome 16 on 16p11.2 (deletion: autism/duplication: schizophrenia), chromosome 22 on 22q11.21 (deletion (Velo-cardio-facial syndrome): schizophrenia/duplication: autism) and 22q13.3 (deletion (Phelan-McDermid syndrome): schizophrenia/duplication: autism). Further research confirmed that the odds on a relation between schizophrenia and deletions at 1q21.1, 3q29, 15q13.3, 22q11.21 en Neurexin 1 (NRXN1) and duplications at 16p11.2 are at 7.5% or higher. [2] [3]

Observed relation within 1q21.1 Relation 1q21 1.jpg
Observed relation within 1q21.1

Common variations in the BCL9 gene, which is in the distal area, confer risk of schizophrenia and may also be associated with bipolar disorder and major depressive disorder. [4]

Research is done on 10-12 genes on 1q21.1 that produce DUF1220-locations. DUF1220 is an unknown protein, which is active in the neurons of the brain near the neocortex. Based on research on apes and other mammals, it is assumed that DUF1220 is related to cognitive development (man: 212 locations; chimpanzee: 37 locations; monkey: 30 locations; mouse: 1 location). It appears that the DUF1220-locations on 1q21.1 are in areas that are related to the size and the development of the brain. The aspect of the size and development of the brain is related to autism (macrocephaly) and schizophrenia (microcephaly). It is assumed that a deletion or a duplication of a gene that produces DUF1220-areas might cause growth and development disorders in the brain [5]

Another relation between macrocephaly with duplications and microcephaly with deletions has been seen in research on the HYDIN Paralog or HYDIN2. This part of 1q21.1 is involved in the development of the brain. It is assumed to be a dosage-sensitive gene. When this gene is not available in the 1q21.1 area it leads to microcephaly. HYDIN2 is a recent duplication (found only in humans) of the HYDIN gene found on 16q22.2. [6]

GJA5 has been identified as the gene that is responsible for the phenotypes observed with congenital heart diseases on the 1q21.1 location. In case of a duplication of GJA5 tetralogy of Fallot is more common. In case of a deletion other congenital heart diseases than tetralogy of Fallot are more common. [7]

Related Research Articles

<span class="mw-page-title-main">Microcephaly</span> Condition in which the head is small due to an underdeveloped brain

Microcephaly is a medical condition involving a smaller-than-normal head. Microcephaly may be present at birth or it may develop in the first few years of life. Brain development is often affected; people with this disorder often have an intellectual disability, poor motor function, poor speech, abnormal facial features, seizures and dwarfism.

<span class="mw-page-title-main">Macrocephaly</span> Abnormally large head size

Macrocephaly is a condition in which circumference of the human head is abnormally large. It may be pathological or harmless, and can be a familial genetic characteristic. People diagnosed with macrocephaly will receive further medical tests to determine whether the syndrome is accompanied by particular disorders. Those with benign or familial macrocephaly are considered to have megalencephaly.

<span class="mw-page-title-main">Chromosome 15</span> Human chromosome

Chromosome 15 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 15 spans about 99.7 million base pairs and represents between 3% and 3.5% of the total DNA in cells. Chromosome 15 is an acrocentric chromosome, with a very small short arm, which contains few protein coding genes among its 19 million base pairs. It has a larger long arm that is gene rich, spanning about 83 million base pairs.

<span class="mw-page-title-main">Chromosome 16</span> Human chromosome

Chromosome 16 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 16 spans about 96 million base pairs and represents just under 3% of the total DNA in cells.

<span class="mw-page-title-main">22q13 deletion syndrome</span> Rare genetic syndrome

22q13 deletion syndrome, also known as Phelan–McDermid syndrome (PMS), is a genetic disorder caused by deletions or rearrangements on the q terminal end of chromosome 22. Any abnormal genetic variation in the q13 region that presents with significant manifestations (phenotype) typical of a terminal deletion may be diagnosed as 22q13 deletion syndrome. There is disagreement among researchers as to the exact definition of 22q13 deletion syndrome. The Developmental Synaptopathies Consortium defines PMS as being caused by SHANK3 mutations, a definition that appears to exclude terminal deletions. The requirement to include SHANK3 in the definition is supported by many but not by those who first described 22q13 deletion syndrome.

The Olduvai domain, known until 2018 as DUF1220 and the NBPF repeat, is a protein domain that shows a striking human lineage-specific (HLS) increase in copy number and appears to be involved in human brain evolution. The protein domain has also been linked to several neurogenetic disorders such as schizophrenia and increased severity of autism. In 2018, it was named by its discoverers after Olduvai Gorge in Tanzania, one of the most important archaeological sites for early humans, to reflect data indicating its role in human brain size and evolution.

<span class="mw-page-title-main">Isodicentric 15</span> Condition caused by two joined and mirrored duplications of part of chromosome 15

Isodicentric 15, also called marker chromosome 15 syndrome, idic(15), partial tetrasomy 15q, or inverted duplication 15, is a chromosome abnormality in which a child is born with extra genetic material from chromosome 15. People with idic(15) are typically born with 47 chromosomes in their body cells, instead of the normal 46. The extra chromosome, which is classified as a small supernumerary marker chromosome, is made up of a piece of chromosome 15 that has been duplicated end-to-end like a mirror image. It is the presence of this extra genetic material that is thought to account for the symptoms seen in some people with idic(15). Individuals with idic(15) have a total of four copies of this chromosome 15 region instead of the usual two copies. The term isodicentric refers to a duplication and inversion of a centromere-containing chromosomal segment.

<span class="mw-page-title-main">VPS13B</span> Protein-coding gene in the species Homo sapiens

Intermembrane lipid transfer protein VPS13B, also known as vacuolar protein sorting-associated 13B, and Cohen syndrome protein 1 is a protein that in humans is encoded by the VPS13B gene. It is a giant protein associated with the Golgi apparatus that is believed to be involved in post-Golgi apparatus sorting and trafficking. Mutations in the human VPS13B gene cause Cohen syndrome.

<span class="mw-page-title-main">BCL9</span> Protein-coding gene in the species Homo sapiens

B-cell CLL/lymphoma 9 protein is a protein that in humans is encoded by the BCL9 gene.

The Center for Applied Genomics is a research center at the Children's Hospital of Philadelphia that focuses on genomics research and the utilization of basic research findings in the development of new medical treatments.

<span class="mw-page-title-main">3q29 microdeletion syndrome</span> Medical condition

3q29 microdeletion syndrome is a rare genetic disorder resulting from the deletion of a segment of chromosome 3. This syndrome was first described in 2005.

Non-allelic homologous recombination (NAHR) is a form of homologous recombination that occurs between two lengths of DNA that have high sequence similarity, but are not alleles.

1q21.1 deletion syndrome is a rare aberration of chromosome 1. A human cell has one pair of identical chromosomes on chromosome 1. With the 1q21.1 deletion syndrome, one chromosome of the pair is not complete, because a part of the sequence of the chromosome is missing. One chromosome has the normal length and the other is too short.

<span class="mw-page-title-main">1q21.1 copy number variations</span> Genetic mutation

1q21.1 copy number variations (CNVs) are rare aberrations of human chromosome 1.

Chromosomal deletion syndromes result from deletion of parts of chromosomes. Depending on the location, size, and whom the deletion is inherited from, there are a few known different variations of chromosome deletions. Chromosomal deletion syndromes typically involve larger deletions that are visible using karyotyping techniques. Smaller deletions result in Microdeletion syndrome, which are detected using fluorescence in situ hybridization (FISH)

<span class="mw-page-title-main">NBPF1</span> Protein-coding gene in the species Homo sapiens

Neuroblastoma breakpoint family, member 1, or NBPF1, is a protein that is encoded by the gene NBPF1 in humans. This protein is member of the neuroblastoma breakpoint family of proteins, a group of proteins that are thought to be involved in the development of the nervous system.

The neuroblastoma breaking point family (NBPF) is a family of genes involved in neuronal development. The family is highly specific to primates, with minimal similarity or presence in other mammals and no presence in other animals, and its genes' content has been subject to a very high number of duplications in humans. It was described by Vandepoele et al. in 2005 and named as such because NBPF1 was found to be broken by a chromosomal translocation in a neuroblastoma patient.

<span class="mw-page-title-main">17q12 microdeletion syndrome</span> Rare genetic anomaly in humans

17q12 microdeletion syndrome, also known as 17q12 deletion syndrome, is a rare chromosomal anomaly caused by the deletion of a small amount of material from a region in the long arm of chromosome 17. It is typified by deletion of the HNF1B gene, resulting in kidney abnormalities and renal cysts and diabetes syndrome. It also has neurocognitive effects, and has been implicated as a genetic factor for autism and schizophrenia.

Syndromic autism denotes cases of autism spectrum disorder that are associated with a broader medical condition, generally a syndrome. Cases without such association, which account for the majority of total autism cases, are known as non-syndromic autism.

16p11.2 deletion syndrome is a rare genetic condition caused by microdeletion on the short arm of chromosome 16. Most affected individuals experience global developmental delay and intellectual disability, as well as childhood-onset obesity. 16p11.2 deletion is estimated to account for approximately 1% of autism spectrum disorder cases.

References

  1. A. Ploeger; 'Towards an integration of evolutionary psychology and developmental science: New insights from evolutionary developmental biology'
  2. Levinson DF, Duan J, Oh S, et al. (March 2011). "Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications". Am J Psychiatry. 168 (3): 302–16. doi:10.1176/appi.ajp.2010.10060876. PMC   4441324 . PMID   21285140.
  3. Ikeda M, Aleksic B, Kirov G, et al. (February 2010). "Copy number variation in schizophrenia in the Japanese population". Biol. Psychiatry. 67 (3): 283–6. doi:10.1016/j.biopsych.2009.08.034. PMID   19880096. S2CID   26047827.
  4. Li J, Zhou G, Ji W, et al. (March 2011). "Common variants in the BCL9 gene conferring risk of schizophrenia". Arch. Gen. Psychiatry. 68 (3): 232–40. doi: 10.1001/archgenpsychiatry.2011.1 . PMID   21383261.
  5. Dumas L, Sikela JM (2009). "DUF1220 domains, cognitive disease, and human brain evolution". Cold Spring Harb. Symp. Quant. Biol. 74: 375–82. doi:10.1101/sqb.2009.74.025. PMC   2902282 . PMID   19850849.
  6. Doggett NA, Xie G, Meincke LJ, et al. (Dec 2006). "A 360-kb interchromosomal duplication of the human HYDIN locus". Genomics. 88 (6): 762–71. doi:10.1016/j.ygeno.2006.07.012. PMID   16938426.
  7. Soemedi, R.; et al. (2011). "Phenotype-Specific Effect of Chromosome 1q21.1 Rearrangements and GJA5 Duplications in 2436 Congenital Heart Disease Patients and 6760 Controls". Hum. Mol. Genet. 21 (7): 1513–1520. doi:10.1093/hmg/ddr589. PMC   3298277 . PMID   22199024.

Further reading