Wilms tumor protein

Last updated
WT1
Protein WT1 PDB 1xf7.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases WT1 , AEWS-GUD, NPHS4, WAGR, WIT-2, WT33, Wilms tumor 1, WT1 transcription factor, WT-1
External IDs OMIM: 607102 MGI: 98968 HomoloGene: 11536 GeneCards: WT1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_144783

RefSeq (protein)

NP_659032

Location (UCSC) Chr 11: 32.39 – 32.44 Mb Chr 2: 104.96 – 105 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Wilms tumor protein (WT33) is a protein that in humans is encoded by the WT1 gene on chromosome 11p. [5] [6] [7] [8]

Function

This gene encodes a transcription factor that contains four zinc finger motifs at the C-terminus and a proline / glutamine-rich DNA-binding domain at the N-terminus. It has an essential role in the normal development of the urogenital system, and it is mutated in a subset of patients with Wilms' tumor, the gene's namesake. Multiple transcript variants, resulting from alternative splicing at two coding exons, have been well characterized. There is also evidence for the use of non-AUG (CUG) translation initiation site upstream of, and in-frame with the first AUG, leading to additional isoforms. [9]

Structure

WT1
Identifiers
SymbolWT1
Pfam PF02165
InterPro IPR000976
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

The WT1 gene product shows similarity to the zinc fingers of the mammalian growth regulated early growth response protein 1 (EGR1) and (EGR2) proteins. [10]

Clinical significance

Mutations of Wilms' tumor suppressor gene1 (WT1) are associated with embryonic malignancy of the kidney, affecting around 1-9 in 100,000 infants. [11] It occurs in both sporadic and hereditary forms. Inactivation of WT1 causes Wilms tumour, and Denys-Drash syndrome (DDS), leading to nephropathy and genital abnormalities. The WT1 protein has been found to bind a host of cellular factors, e.g. p53, a known tumor suppressor. [7] [12] [13] [14] Despite the name, WT1 mutation is found in only about 5-10% of Wilms Tumor cases. [15] Some other genes associated with this disease are BRCA2 and GPC3

WT1 is mutated in a mutually exclusive manner with TET2, IDH1, and IDH2 in acute myeloid leukemia. [16] TET2 can be recruited by WT1 to its target genes and activates WT1-target genes by converting 5mC into 5hmC residues at the genes’ promoters, [17] representing an important feature of a new regulatory WIT pathway linked to the development of AML. [18]

The serine protease HtrA2 binds to WT1 and it cleaves WT1 at multiple sites following the treatment with cytotoxic drugs. [19] [20]

Using immunohistochemistry, WT1 protein can be demonstrated in the cell nuclei of 75% of mesotheliomas and in 93% of ovarian serous carcinomas, as well as in benign mesothelium and fallopian tube epithelium. This allows these tumours to be distinguished from other, similar, cancers, such as adenocarcinoma. Antibodies to the WT1 protein, however, also frequently cross-react with cytoplasmic proteins in a variety of benign and malignant cells, so that only nuclear staining can be considered diagnostic. [21]

Mutation in WT1 causes predisposition to hernias. [22]

As a drug target

A vaccine that induces an acquired immune response against WT1 is in clinical trials for various cancers. [23] [24] [25] T cell therapies (TCR-T) are also being tested in clinical trials for leukemia. [26] [27]

Disease monitoring

WT1 gene is overexpressed in case of hematological malignancies. This fact is widely used for disease monitoring - evaluations of treatment success, as well as relapse or remission post-treatment checks. Preferably quantitative polymerase chain reaction (qPCR) is used to establish the levels of WT1 expression. The rising level of WT1 expression is significantly connected with disease progression and relapse of the proliferative disorder. [28] WT1 as a marker is used as a "golden standard" for monitoring of acute myeloid leukemia, however other hematological malignancies such as chronic myeloid leukemia or myeloproliferative syndrome can manifest with overexpressed WT1 and for in specific cases WT1 monitoring can be used even in patients diagnosed with those types of cancer. [29]

Interactions

WT1 has been shown to interact with TET2, [17] U2AF2, [30] PAWR, [31] UBE2I [32] and WTAP. [33] In combination with Cited2 activates WT1 the Steroidogenic factor 1 [34]

RNA editing

There is some evidence for RNA editing of human WT1 mRNA. As with alternative splicing of the gene RNA editing increases the number of isoforms of this protein. [35] [36]

Editing is tissue specific and developmentally regulated. Editing shown to be restricted in testis and kidney in the rat. [35] Editing of this gene product has been found to occur in mice and rats as well as humans. [35] [37]

Editing type

The editing site is found at nucleotide position 839 found in exon 6 of the gene. It causes a codon change from a Proline codon (CCC) to a Leucine codon (CUC) [35]

The type of editing is a uridine to cytidine (U to C) base change. The editing reaction is thought to be an amidation of uridine which converts it to a cytidine. The relevance of this editing is unknown as is the enzyme responsible for this editing. The region where editing occurs like that of other editing sites, e.g., ApoB mRNA editing is conserved. Mice, rats and humans have conserved sequences flanking the editing site consisting of 10 nucleotides before the editing site and four after the site. [35]

Effects of editing

RNA editing results in an alternative amino acid being translated. [35] The changes in amino acid occur in a region identified as a domain involved in transcription activation function. [38]

Editing has been shown to decrease repressive regulation of transcription of growth promoting genes in vitro compared to the non edited protein. Although the physiological role of editing has yet to be determined, suggestions have been made that editing may play a role in the pathogenesis of Wilms tumour. [37]

Experimental models

WT1 gene can be found as well in the genome of mice. The mouse model with a WT1 knock-out shows symptoms corresponding to human pathophysiology. The mice were observed to have defects of urogenital tract similar to cases patients when WT1 signalling has been malfunctioning. [29] The mouse had absent kidneys as their development failed during embryonic stages. This suggests that WT1 is unconditionally required for a proper kidney formation and development. [39]

Apart from that, the WT1 knock-out mice lacked several types of glands, such as gonads or adrenal glands. The effect of the knock-out was as well visible on heart and blood circulation - several abnormalities concerning heart and diaphragm, as well as troubles with swelling and lymph circulation were described. Due to those defects, the mouse died before it was even born. [39]

Mouse model is used to study some specific disorder connected with WT1 expression, too, such as acute myeloid leukemia. [40] To examine the expression levels and localisation of WT1, a mouse model using WT1-GFP (green fluorescent protein) knock-in has been made. This model showed, that WT1 is significantly overexpressed in leukemic cells compared to none or minor expression in normal untransformed cells from bone marrow, either hematopoietic stem cells or hematopoietic progenitors and precursors. [41]

Related Research Articles

<span class="mw-page-title-main">Acute myeloblastic leukemia with maturation</span> Medical condition

Acute myeloblastic leukemia with maturation (M2) is a subtype of acute myeloid leukemia (AML).

<span class="mw-page-title-main">RUNX1</span> Protein-coding gene in humans

Runt-related transcription factor 1 (RUNX1) also known as acute myeloid leukemia 1 protein (AML1) or core-binding factor subunit alpha-2 (CBFA2) is a protein that in humans is encoded by the RUNX1 gene.

<span class="mw-page-title-main">PAX2</span> Protein-coding gene in humans

Paired box gene 2, also known as Pax-2, is a protein which in humans is encoded by the PAX2 gene.

<span class="mw-page-title-main">HOXA9</span> Protein-coding gene in humans

Homeobox protein Hox-A9 is a protein that in humans is encoded by the HOXA9 gene.

<span class="mw-page-title-main">PAWR</span> Protein-coding gene in humans

PRKC apoptosis WT1 regulator protein, or Prostate apoptosis response-4, is a tumor-suppressor protein coded for in the human by the PAWR gene, that induces apoptosis in cancer cells, but not in normal cells.

<span class="mw-page-title-main">CEBPA</span> Protein-coding gene in the species Homo sapiens

CCAAT/enhancer-binding protein alpha is a protein encoded by the CEBPA gene in humans. CCAAT/enhancer-binding protein alpha is a transcription factor involved in the differentiation of certain blood cells. For details on the CCAAT structural motif in gene enhancers and on CCAAT/Enhancer Binding Proteins see the specific page.

<span class="mw-page-title-main">GATA3</span> Protein-coding gene in the species Homo sapiens

GATA3 is a transcription factor that in humans is encoded by the GATA3 gene. Studies in animal models and humans indicate that it controls the expression of a wide range of biologically and clinically important genes.

<span class="mw-page-title-main">ING1</span> Protein-coding gene in the species Homo sapiens

Inhibitor of growth protein 1 is a protein that in humans is encoded by the ING1 gene.

<span class="mw-page-title-main">PAX8</span> Mammalian protein found in humans

Paired box gene 8, also known as PAX8, is a protein which in humans is encoded by the PAX8 gene.

<span class="mw-page-title-main">CDKN2D</span> Protein-coding gene in the species Homo sapiens

Cyclin-dependent kinase 4 inhibitor D is an enzyme that in humans is encoded by the CDKN2D gene.

<span class="mw-page-title-main">TREM1</span> Protein-coding gene in the species Homo sapiens

Triggering receptor expressed on myeloid cells 1 (TREM1) is an immunoglobulin (Ig) superfamily transmembrane protein that, in humans, is encoded by the TREM1 gene. TREM1 is constitutively expressed on the surface of peripheral blood monocytes and neutrophils, and upregulated by toll-like receptor (TLR) ligands; activation of TREM1 amplifies immune responses.

<span class="mw-page-title-main">SALL4</span> Protein-coding gene in the species Homo sapiens

Sal-like protein 4(SALL4) is a transcription factor encoded by a member of the Spalt-like (SALL) gene family, SALL4. The SALL genes were identified based on their sequence homology to Spalt, which is a homeotic gene originally cloned in Drosophila melanogaster that is important for terminal trunk structure formation in embryogenesis and imaginal disc development in the larval stages. There are four human SALL proteins with structural homology and playing diverse roles in embryonic development, kidney function, and cancer. The SALL4 gene encodes at least three isoforms, termed A, B, and C, through alternative splicing, with the A and B forms being the most studied. SALL4 can alter gene expression changes through its interaction with many co-factors and epigenetic complexes. It is also known as a key embryonic stem cell (ESC) factor.

<span class="mw-page-title-main">CD200</span> Protein-coding gene in the species Homo sapiens

OX-2 membrane glycoprotein, also named CD200 is a human protein encoded by the CD200 gene. CD200 gene is in human located on chromosome 3 in proximity to genes encoding other B7 proteins CD80/CD86. In mice CD200 gene is on chromosome 16.

<span class="mw-page-title-main">LATS2</span> Protein-coding gene in the species Homo sapiens

Large tumor suppressor kinase 2 (LATS2) is an enzyme that in humans is encoded by the LATS2 gene.

<span class="mw-page-title-main">WTAP (gene)</span> Protein that in humans is encoded by the WTAP gene

Pre-mRNA-splicing regulator WTAP is a protein that in humans is encoded by the WTAP gene.

<span class="mw-page-title-main">OSR1</span> Protein-coding gene in the species Homo sapiens

Protein odd-skipped-related 1 is a transcription factor that in humans is encoded by the OSR1 gene. The OSR1 and OSR2 transcription factors participate in the normal development of body parts such as the kidney.

<span class="mw-page-title-main">GAS1</span> Protein-coding gene in the species Homo sapiens

Growth arrest-specific protein 1 is a protein that in humans is encoded by the GAS1 gene.

Frasier syndrome is a urogenital anomaly associated with the WT1 gene.

<span class="mw-page-title-main">Tet methylcytosine dioxygenase 1</span> Mammalian protein found in Homo sapiens

Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) is a member of the TET family of enzymes, in humans it is encoded by the TET1 gene. Its function, regulation, and utilizable pathways remain a matter of current research while it seems to be involved in DNA demethylation and therefore gene regulation.

<span class="mw-page-title-main">Tet methylcytosine dioxygenase 2</span> Human gene

Tet methylcytosine dioxygenase 2 (TET2) is a human gene. It resides at chromosome 4q24, in a region showing recurrent microdeletions and copy-neutral loss of heterozygosity (CN-LOH) in patients with diverse myeloid malignancies.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000184937 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000016458 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Burgin AB, Parodos K, Lane DJ, Pace NR (February 1990). "The excision of intervening sequences from Salmonella 23S ribosomal RNA". Cell. 60 (3): 405–14. doi:10.1016/0092-8674(90)90592-3. PMID   2406020. S2CID   39909491.
  6. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH (February 1990). "Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus". Cell. 60 (3): 509–20. doi:10.1016/0092-8674(90)90601-A. PMID   2154335. S2CID   29092372.
  7. 1 2 Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GA (February 1990). "Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping" (PDF). Nature. 343 (6260): 774–8. Bibcode:1990Natur.343..774G. doi:10.1038/343774a0. PMID   2154702. S2CID   4235306.
  8. Huang A, Campbell CE, Bonetta L, McAndrews-Hill MS, Chilton-MacNeill S, Coppes MJ, Law DJ, Feinberg AP, Yeger H, Williams BR (November 1990). "Tissue, developmental, and tumor-specific expression of divergent transcripts in Wilms tumor". Science. 250 (4983): 991–4. Bibcode:1990Sci...250..991H. doi:10.1126/science.2173145. PMID   2173145.
  9. "Entrez Gene: WT1 Wilms tumor 1".
  10. Han Y, San-Marina S, Yang L, Khoury H, Minden MD (2007). "The zinc finger domain of Wilms' tumor 1 suppressor gene (WT1) behaves as a dominant negative, leading to abrogation of WT1 oncogenic potential in breast cancer cells". Breast Cancer Research. 9 (4): R43. doi: 10.1186/bcr1743 . PMC   2206716 . PMID   17634147.
  11. RESERVED IU. "Orphanet: Nephroblastoma". www.orpha.net. Retrieved 2019-05-06.{{cite web}}: CS1 maint: numeric names: authors list (link)
  12. Rauscher FJ (July 1993). "The WT1 Wilms' tumor gene product: a developmentally regulated transcription factor in the kidney that functions as a tumor suppressor". FASEB Journal. 7 (10): 896–903. doi: 10.1096/fasebj.7.10.8393820 . PMID   8393820. S2CID   221754031.
  13. Buckler AJ, Pelletier J, Haber DA, Glaser T, Housman DE (March 1991). "Isolation, characterization, and expression of the murine Wilms' tumor gene (WT1) during kidney development". Molecular and Cellular Biology. 11 (3): 1707–12. doi:10.1128/mcb.11.3.1707. PMC   369476 . PMID   1671709.
  14. Little MH, Prosser J, Condie A, Smith PJ, Van Heyningen V, Hastie ND (June 1992). "Zinc finger point mutations within the WT1 gene in Wilms tumor patients". Proceedings of the National Academy of Sciences of the United States of America. 89 (11): 4791–5. Bibcode:1992PNAS...89.4791L. doi: 10.1073/pnas.89.11.4791 . PMC   49173 . PMID   1317572.
  15. Davidoff AM (2012). "Wilms Tumor". Advances in Pediatrics. 59 (1): 247–267. doi:10.1016/j.yapd.2012.04.001. PMC   3589819 . PMID   22789581 . Retrieved 2019-01-28.
  16. Rampal R, Alkalin A, Madzo J, Vasanthakumar A, Pronier E, Patel J, Li Y, Ahn J, Abdel-Wahab O, Shih A, Lu C, Ward PS, Tsai JJ, Hricik T, Tosello V, Tallman JE, Zhao X, Daniels D, Dai Q, Ciminio L, Aifantis I, He C, Fuks F, Tallman MS, Ferrando A, Nimer S, Paietta E, Thompson CB, Licht JD, Mason CE, Godley LA, Melnick A, Figueroa ME, Levine RL (December 2014). "DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia". Cell Reports. 9 (5): 1841–1855. doi:10.1016/j.celrep.2014.11.004. PMC   4267494 . PMID   25482556.
  17. 1 2 Wang Y, Xiao M, Chen X, Chen L, Xu Y, Lv L, Wang P, Yang H, Ma S, Lin H, Jiao B, Ren R, Ye D, Guan KL, Xiong Y (February 2015). "WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation". Molecular Cell. 57 (4): 662–673. doi:10.1016/j.molcel.2014.12.023. PMC   4336627 . PMID   25601757.
  18. Sardina JL, Graf T (February 2015). "A new path to leukemia with WIT". Molecular Cell. 57 (4): 573–574. doi: 10.1016/j.molcel.2015.02.005 . PMID   25699704.
  19. Essafi A, Hastie ND (January 2010). "WT1 the oncogene: a tale of death and HtrA". Molecular Cell. 37 (2): 153–5. doi: 10.1016/j.molcel.2010.01.010 . PMID   20122396.
  20. Hartkamp J, Carpenter B, Roberts SG (January 2010). "The Wilms' tumor suppressor protein WT1 is processed by the serine protease HtrA2/Omi". Molecular Cell. 37 (2): 159–71. doi:10.1016/j.molcel.2009.12.023. PMC   2815029 . PMID   20122399.
  21. Leong AS, Cooper K, Leong FJ (2003). Manual of Diagnostic Cytology (2 ed.). Greenwich Medical Media, Ltd. pp. 447–448. ISBN   978-1-84110-100-2.
  22. Jorgenson E, Makki N, Shen L, Chen DC, Tian C, Eckalbar WL, Hinds D, Ahituv N, Avins A (2015). "A genome-wide association study identifies four novel susceptibility loci underlying inguinal hernia - PubMed". Nature Communications. 6: 10130. doi:10.1038/ncomms10130. PMC   4703831 . PMID   26686553.
  23. "SELLAS Life Sciences Announces Positive WT1 Cancer Vaccine (galinpepimut-S) Clinical Results at the 13th International Conference of the International Mesothelioma Interest Group (iMig)". Archived from the original on 2016-06-04. Retrieved 2016-05-08.
  24. Pleural mesothelioma WT1 vaccine is renamed "galinpepimut-S"
  25. Oka Y, Tsuboi A, Kawakami M, Elisseeva OA, Nakajima H, Udaka K, Kawase I, Oji Y, Sugiyama H (2006). "Development of WT1 peptide cancer vaccine against hematopoietic malignancies and solid cancers". Current Medicinal Chemistry. 13 (20): 2345–52. doi:10.2174/092986706777935104. PMID   16918359.
  26. Chapuis AG, Egan DN, Bar M, Schmitt TM, McAfee MS, Paulson KG, Voillet V, Gottardo R, Ragnarsson GB (July 2019). "T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant". Nature Medicine. 25 (7): 1064–1072. doi: 10.1038/s41591-019-0472-9 . ISSN   1078-8956. PMC   6982533 . PMID   31235963.
  27. Tawara I, Kageyama S, Miyahara Y, Fujiwara H, Nishida T, Akatsuka Y, Ikeda H, Tanimoto K, Terakura S (2017-11-02). "Safety and persistence of WT1-specific T-cell receptor gene−transduced lymphocytes in patients with AML and MDS". Blood. 130 (18): 1985–1994. doi: 10.1182/blood-2017-06-791202 . ISSN   0006-4971. PMID   28860210.
  28. Candoni A, Toffoletti E, Gallina R, Simeone E, Chiozzotto M, Volpetti S, Fanin R (March 2011). "Monitoring of minimal residual disease by quantitative WT1 gene expression following reduced intensity conditioning allogeneic stem cell transplantation in acute myeloid leukemia". Clinical Transplantation. 25 (2): 308–16. doi: 10.1111/j.1399-0012.2010.01251.x . PMID   20412098. S2CID   6677442.
  29. 1 2 Sugiyama H (May 2010). "WT1 (Wilms' tumor gene 1): biology and cancer immunotherapy". Japanese Journal of Clinical Oncology. 40 (5): 377–87. doi: 10.1093/jjco/hyp194 . PMID   20395243.
  30. Davies RC, Calvio C, Bratt E, Larsson SH, Lamond AI, Hastie ND (October 1998). "WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes". Genes & Development. 12 (20): 3217–25. doi:10.1101/gad.12.20.3217. PMC   317218 . PMID   9784496.
  31. Johnstone RW, See RH, Sells SF, Wang J, Muthukkumar S, Englert C, Haber DA, Licht JD, Sugrue SP, Roberts T, Rangnekar VM, Shi Y (December 1996). "A novel repressor, par-4, modulates transcription and growth suppression functions of the Wilms' tumor suppressor WT1". Molecular and Cellular Biology. 16 (12): 6945–56. doi:10.1128/mcb.16.12.6945. PMC   231698 . PMID   8943350.
  32. Wang ZY, Qiu QQ, Seufert W, Taguchi T, Testa JR, Whitmore SA, Callen DF, Welsh D, Shenk T, Deuel TF (October 1996). "Molecular cloning of the cDNA and chromosome localization of the gene for human ubiquitin-conjugating enzyme 9". The Journal of Biological Chemistry. 271 (40): 24811–6. doi: 10.1074/jbc.271.40.24811 . PMID   8798754.
  33. Little NA, Hastie ND, Davies RC (September 2000). "Identification of WTAP, a novel Wilms' tumour 1-associating protein". Human Molecular Genetics. 9 (15): 2231–9. doi: 10.1093/oxfordjournals.hmg.a018914 . PMID   11001926.
  34. Val P, Martinez-Barbera JP, Swain A (June 2007). "Adrenal development is initiated by Cited2 and Wt1 through modulation of Sf-1 dosage". Development. 134 (12): 2349–58. doi: 10.1242/dev.004390 . PMID   17537799.
  35. 1 2 3 4 5 6 Sharma PM, Bowman M, Madden SL, Rauscher FJ, Sukumar S (March 1994). "RNA editing in the Wilms' tumor susceptibility gene, WT1". Genes & Development. 8 (6): 720–31. doi: 10.1101/gad.8.6.720 . PMID   7926762.
  36. Wagner KD, Wagner N, Schedl A (May 2003). "The complex life of WT1". Journal of Cell Science. 116 (Pt 9): 1653–8. doi: 10.1242/jcs.00405 . PMID   12665546.
  37. 1 2 Mrowka C, Schedl A (November 2000). "Wilms' tumor suppressor gene WT1: from structure to renal pathophysiologic features". Journal of the American Society of Nephrology. 11 (Suppl 16): S106–15. doi: 10.1681/ASN.V11suppl_2s106 . PMID   11065340.
  38. Wang ZY, Qiu QQ, Deuel TF (May 1993). "The Wilms' tumor gene product WT1 activates or suppresses transcription through separate functional domains". The Journal of Biological Chemistry. 268 (13): 9172–5. doi: 10.1016/S0021-9258(18)98329-8 . PMID   8486616.
  39. 1 2 Ozdemir DD, Hohenstein P (April 2014). "Wt1 in the kidney--a tale in mouse models". Pediatric Nephrology. 29 (4): 687–93. doi:10.1007/s00467-013-2673-7. PMID   24240471. S2CID   2019375.
  40. Gaiger A, Reese V, Disis ML, Cheever MA (August 2000). "Immunity to WT1 in the animal model and in patients with acute myeloid leukemia". Blood. 96 (4): 1480–9. doi: 10.1182/blood.V96.4.1480 . PMID   10942395.
  41. Hosen N, Shirakata T, Nishida S, Yanagihara M, Tsuboi A, Kawakami M, Oji Y, Oka Y, Okabe M, Tan B, Sugiyama H, Weissman IL (August 2007). "The Wilms' tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis". Leukemia. 21 (8): 1783–91. doi: 10.1038/sj.leu.2404752 . PMID   17525726.

Further reading