PAWR

Last updated
PAWR
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PAWR , Pawr, 2310001G03Rik, PAR4, Par-4, pro-apoptotic WT1 regulator
External IDs OMIM: 601936; MGI: 2149961; HomoloGene: 1940; GeneCards: PAWR; OMA:PAWR - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002583
NM_001354732
NM_001354733

NM_054056

RefSeq (protein)

NP_002574
NP_001341661
NP_001341662

NP_473397

Location (UCSC) Chr 12: 79.57 – 79.69 Mb Chr 10: 108.17 – 108.25 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

PRKC apoptosis WT1 regulator protein, or Prostate apoptosis response-4, is a tumor-suppressor protein coded for in the human by the PAWR gene, that induces apoptosis in cancer cells, but not in normal cells.

Contents

Function

The tumor suppressor WT1 represses and activates transcription. The protein encoded by this gene is a WT1-interacting protein that itself functions as a transcriptional repressor. It contains a putative leucine zipper domain which interacts with the zinc finger DNA binding domain of WT1. This protein is specifically upregulated during apoptosis of prostate cells. [5] The active domain of the Par-4 protein has been found to confer cancer resistance in transgenic mice without compromising normal viability or aging, and may have therapeutic significance. [6]

Interactions

PAWR has been shown to interact with:

Related Research Articles

p53 Mammalian protein found in humans

p53, also known as Tumor protein P53, cellular tumor antigen p53, or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins are crucial in vertebrates, where they prevent cancer formation. As such, p53 has been described as "the guardian of the genome" because of its role in conserving stability by preventing genome mutation. Hence TP53 is classified as a tumor suppressor gene.

<span class="mw-page-title-main">Tumor suppressor gene</span> Gene that inhibits expression of the tumorigenic phenotype

A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell during cell division and replication. If the cell grows uncontrollably, it will result in cancer. When a tumor suppressor gene is mutated, it results in a loss or reduction in its function. In combination with other genetic mutations, this could allow the cell to grow abnormally. The loss of function for these genes may be even more significant in the development of human cancers, compared to the activation of oncogenes.

p73 Protein-coding gene in the species Homo sapiens

p73 is a protein related to the p53 tumor protein. Because of its structural resemblance to p53, it has also been considered a tumor suppressor. It is involved in cell cycle regulation, and induction of apoptosis. Like p53, p73 is characterized by the presence of different isoforms of the protein. This is explained by splice variants, and an alternative promoter in the DNA sequence.

p16 Mammalian protein found in humans

p16, is a protein that slows cell division by slowing the progression of the cell cycle from the G1 phase to the S phase, thereby acting as a tumor suppressor. It is encoded by the CDKN2A gene. A deletion in this gene can result in insufficient or non-functional p16, accelerating the cell cycle and resulting in many types of cancer.

<span class="mw-page-title-main">Transcription factor Jun</span> Mammalian protein found in Homo sapiens

Transcription factor Jun is a protein that in humans is encoded by the JUN gene. c-Jun, in combination with protein c-Fos, forms the AP-1 early response transcription factor. It was first identified as the Fos-binding protein p39 and only later rediscovered as the product of the JUN gene. c-jun was the first oncogenic transcription factor discovered. The proto-oncogene c-Jun is the cellular homolog of the viral oncoprotein v-jun. The viral homolog v-jun was discovered in avian sarcoma virus 17 and was named for ju-nana, the Japanese word for 17. The human JUN encodes a protein that is highly similar to the viral protein, which interacts directly with specific target DNA sequences to regulate gene expression. This gene is intronless and is mapped to 1p32-p31, a chromosomal region involved in both translocations and deletions in human malignancies.

<span class="mw-page-title-main">Wilms tumor protein</span> Transcription factor gene involved in the urogenital system

Wilms tumor protein (WT33) is a protein that in humans is encoded by the WT1 gene on chromosome 11p.

<span class="mw-page-title-main">FHL2</span> Protein-coding gene in the species Homo sapiens

Four and a half LIM domains protein 2 also known as FHL-2 is a protein that in humans is encoded by the FHL2 gene. LIM proteins contain a highly conserved double zinc finger motif called the LIM domain.

<span class="mw-page-title-main">DNAJA3</span> Protein-coding gene in the species Homo sapiens

DnaJ homolog subfamily A member 3, mitochondrial, also known as Tumorous imaginal disc 1 (TID1), is a protein that in humans is encoded by the DNAJA3 gene on chromosome 16. This protein belongs to the DNAJ/Hsp40 protein family, which is known for binding and activating Hsp70 chaperone proteins to perform protein folding, degradation, and complex assembly. As a mitochondrial protein, it is involved in maintaining membrane potential and mitochondrial DNA (mtDNA) integrity, as well as cellular processes such as cell movement, growth, and death. Furthermore, it is associated with a broad range of diseases, including neurodegenerative diseases, inflammatory diseases, and cancers.

<span class="mw-page-title-main">DNA damage-inducible transcript 3</span> Human protein and coding gene

DNA damage-inducible transcript 3, also known as C/EBP homologous protein (CHOP), is a pro-apoptotic transcription factor that is encoded by the DDIT3 gene. It is a member of the CCAAT/enhancer-binding protein (C/EBP) family of DNA-binding transcription factors. The protein functions as a dominant-negative inhibitor by forming heterodimers with other C/EBP members, preventing their DNA binding activity. The protein is implicated in adipogenesis and erythropoiesis and has an important role in the cell's stress response.

<span class="mw-page-title-main">KAT5</span> Protein-coding gene in the species Homo sapiens

Histone acetyltransferase KAT5 is an enzyme that in humans is encoded by the KAT5 gene. It is also commonly identified as TIP60.

<span class="mw-page-title-main">ING1</span> Protein-coding gene in the species Homo sapiens

Inhibitor of growth protein 1 is a protein that in humans is encoded by the ING1 gene.

<span class="mw-page-title-main">PAX8</span> Mammalian protein found in humans

Paired box gene 8, also known as PAX8, is a protein which in humans is encoded by the PAX8 gene.

<span class="mw-page-title-main">TP53BP2</span> Protein-coding gene in the species Homo sapiens

Apoptosis-stimulating of p53 protein 2 (ASPP2) also known as Bcl2-binding protein (Bbp) and tumor suppressor p53-binding protein 2 (p53BP2) is a protein that in humans is encoded by the TP53BP2 gene. Multiple transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">HDAC9</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 9 is an enzyme that in humans is encoded by the HDAC9 gene.

<span class="mw-page-title-main">DLC1</span> Protein-coding gene in the species Homo sapiens

Deleted in Liver Cancer 1 also known as DLC1 and StAR-related lipid transfer protein 12 (STARD12) is a protein which in humans is encoded by the DLC1 gene.

<span class="mw-page-title-main">DACH1</span> Protein-coding gene in the species Homo sapiens

Dachshund homolog 1, also known as DACH1, is a protein which in humans is encoded by the DACH1 gene. DACH1 has been shown to interact with Ubc9, Smad4, and NCoR.

<span class="mw-page-title-main">ING2</span> Protein-coding gene in the species Homo sapiens

Inhibitor of growth protein 2 is a protein that in humans is encoded by the ING2 gene.

<span class="mw-page-title-main">DAPK3</span> Protein-coding gene in the species Homo sapiens

Death-associated protein kinase 3 is an enzyme that in humans is encoded by the DAPK3 gene.

<span class="mw-page-title-main">Retinoblastoma protein</span> Mammalian protein found in humans

The retinoblastoma protein is a tumor suppressor protein that is dysfunctional in several major cancers. One function of pRb is to prevent excessive cell growth by inhibiting cell cycle progression until a cell is ready to divide. When the cell is ready to divide, pRb is phosphorylated, inactivating it, and the cell cycle is allowed to progress. It is also a recruiter of several chromatin remodeling enzymes such as methylases and acetylases.

Anticancer genes exhibit a preferential ability to kill cancer cells while leaving healthy cells unharmed. This phenomenon is achieved through various processes such as apoptosis following a mitotic catastrophe, necrosis, and autophagy. In the late 1990s, extensive research in the field of cancer cells led to the discovery of anticancer genes. Mutations in these genes due to base substitutions leading to insertions, deletions, or alterations in missense amino acids can cause frameshifts, thereby altering the protein. A change in gene copy number or rearrangements is also essential for deregulating these genes. The loss or alteration of these anticancer genes due to mutations or rearrangements may lead to the development of cancer.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000177425 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000035873 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: PAWR PRKC, apoptosis, WT1, regulator".
  6. Zhao Y, Burikhanov R, Qiu S, Lele SM, Jennings CD, Bondada S, Spear B, Rangnekar VM (Oct 2007). "Cancer resistance in transgenic mice expressing the SAC module of Par-4". Cancer Research. 67 (19): 9276–85. doi: 10.1158/0008-5472.CAN-07-2124 . PMID   17909035.
  7. Guo Q, Xie J (Feb 2004). "AATF inhibits aberrant production of amyloid beta peptide 1-42 by interacting directly with Par-4". The Journal of Biological Chemistry. 279 (6): 4596–603. doi: 10.1074/jbc.M309811200 . PMID   14627703.
  8. Kawai T, Akira S, Reed JC (Sep 2003). "ZIP kinase triggers apoptosis from nuclear PML oncogenic domains". Molecular and Cellular Biology. 23 (17): 6174–86. doi:10.1128/mcb.23.17.6174-6186.2003. PMC   180930 . PMID   12917339.
  9. Díaz-Meco MT, Municio MM, Frutos S, Sanchez P, Lozano J, Sanz L, Moscat J (Sep 1996). "The product of par-4, a gene induced during apoptosis, interacts selectively with the atypical isoforms of protein kinase C". Cell. 86 (5): 777–86. doi: 10.1016/s0092-8674(00)80152-x . PMID   8797824. S2CID   15675524.
  10. Xie J, Guo Q (Jul 2004). "Par-4 inhibits choline uptake by interacting with CHT1 and reducing its incorporation on the plasma membrane". The Journal of Biological Chemistry. 279 (27): 28266–75. doi: 10.1074/jbc.M401495200 . PMID   15090548.
  11. Roussigne M, Cayrol C, Clouaire T, Amalric F, Girard JP (Apr 2003). "THAP1 is a nuclear proapoptotic factor that links prostate-apoptosis-response-4 (Par-4) to PML nuclear bodies". Oncogene. 22 (16): 2432–42. doi:10.1038/sj.onc.1206271. PMID   12717420. S2CID   25237333.
  12. Johnstone RW, See RH, Sells SF, Wang J, Muthukkumar S, Englert C, Haber DA, Licht JD, Sugrue SP, Roberts T, Rangnekar VM, Shi Y (Dec 1996). "A novel repressor, par-4, modulates transcription and growth suppression functions of the Wilms' tumor suppressor WT1". Molecular and Cellular Biology. 16 (12): 6945–56. doi:10.1128/mcb.16.12.6945. PMC   231698 . PMID   8943350.

Further reading