Protein AATF

Last updated
AATF
Identifiers
Aliases AATF , BFR2, CHE-1, CHE1, DED, Apoptosis-antagonizing transcription factor, apoptosis antagonizing transcription factor
External IDs OMIM: 608463 MGI: 1929608 HomoloGene: 40811 GeneCards: AATF
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_012138

NM_019816

RefSeq (protein)

NP_036270

NP_062790

Location (UCSC) Chr 17: 36.95 – 37.06 Mb Chr 11: 84.42 – 84.51 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Protein AATF, also known as apoptosis-antagonizing transcription factor is a protein that in humans is encoded by the AATF gene. [5] [6] [7]

Contents

Function

The protein encoded by this gene was identified on the basis of its interaction with MAP3K12/DLK, a protein kinase known to be involved in the induction of cell apoptosis. This gene product contains a leucine zipper, which is a characteristic motif of transcription factors, and was shown to exhibit strong transactivation activity when fused to Gal4 DNA binding domain. Overexpression of this gene interfered with MAP3K12 induced apoptosis. [7]

Interactions

Protein AATF has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">Transcription factor Sp1</span> Protein-coding gene in the species Homo sapiens

Transcription factor Sp1, also known as specificity protein 1* is a protein that in humans is encoded by the SP1 gene.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 2</span> Protein found in humans

Mothers against decapentaplegic homolog 2, also known as SMAD family member 2 or SMAD2, is a protein that in humans is encoded by the SMAD2 gene. MAD homolog 2 belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways.

<span class="mw-page-title-main">Myogenin</span> Mammalian protein found in Homo sapiens

Myogenin, is a transcriptional activator encoded by the MYOG gene. Myogenin is a muscle-specific basic-helix-loop-helix (bHLH) transcription factor involved in the coordination of skeletal muscle development or myogenesis and repair. Myogenin is a member of the MyoD family of transcription factors, which also includes MyoD, Myf5, and MRF4.

<span class="mw-page-title-main">HDAC1</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 1 (HDAC1) is an enzyme that in humans is encoded by the HDAC1 gene.

<span class="mw-page-title-main">MAPK8</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 8 is a ubiquitous enzyme that in humans is encoded by the MAPK8 gene.

<span class="mw-page-title-main">Histone deacetylase 2</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 2 (HDAC2) is an enzyme that in humans is encoded by the HDAC2 gene. It belongs to the histone deacetylase class of enzymes responsible for the removal of acetyl groups from lysine residues at the N-terminal region of the core histones. As such, it plays an important role in gene expression by facilitating the formation of transcription repressor complexes and for this reason is often considered an important target for cancer therapy.

<span class="mw-page-title-main">POLR2C</span> Protein-coding gene in the species Homo sapiens

DNA-directed RNA polymerase II subunit RPB3 is an enzyme that in humans is encoded by the POLR2C gene.

<span class="mw-page-title-main">POLR2J</span> Protein-coding gene in the species Homo sapiens

DNA-directed RNA polymerase II subunit RPB11-a is an enzyme that in humans is encoded by the POLR2J gene.

<span class="mw-page-title-main">HIPK2</span> Protein-coding gene in the species Homo sapiens

Homeodomain-interacting protein kinase 2 is an enzyme that in humans is encoded by the HIPK2 gene. HIPK2 can be categorized as a Serine/Threonine Protein kinase, specifically one that interacts with homeodomain transcription factors. It belongs to a family of protein kinases known as the DYRK kinases. Within this family HIPK2 belongs to a group of homeodomain-interacting protein kinases (HIPKs), including HIPK1 and HIPK3. HIPK2 can be found in a wide variety of species and its functions in gene expression and apoptosis are regulated by several different mechanisms.

<span class="mw-page-title-main">PAWR</span> Protein-coding gene in humans

PRKC apoptosis WT1 regulator protein, or Prostate apoptosis response-4, is a tumor-suppressor protein coded for in the human by the PAWR gene, that induces apoptosis in cancer cells, but not in normal cells.

<span class="mw-page-title-main">Serum response factor</span> Mammalian protein found in Homo sapiens

Serum response factor, also known as SRF, is a transcription factor protein.

<span class="mw-page-title-main">HDAC9</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 9 is an enzyme that in humans is encoded by the HDAC9 gene.

<span class="mw-page-title-main">CDC2L1</span> Protein-coding gene in the species Homo sapiens

PITSLRE serine/threonine-protein kinase CDC2L1 is an enzyme that in humans is encoded by the CDK11B gene.

<span class="mw-page-title-main">MEF2D</span> Protein-coding gene in the species Homo sapiens

Myocyte-specific enhancer factor 2D is a protein that in humans is encoded by the MEF2D gene.

<span class="mw-page-title-main">MBD3</span> Protein-coding gene in the species Homo sapiens

Methyl-CpG-binding domain protein 3 is a protein that in humans is encoded by the MBD3 gene.

<span class="mw-page-title-main">RBBP8</span> Protein-coding gene in the species Homo sapiens

Retinoblastoma-binding protein 8 is a protein that in humans is encoded by the RBBP8 gene.

<span class="mw-page-title-main">MAGED1</span> Protein-coding gene in humans

Melanoma-associated antigen D1 is a protein that in humans is encoded by the MAGED1 gene.

<span class="mw-page-title-main">MTA2</span> Protein-coding gene in the species Homo sapiens

Metastasis-associated protein MTA2 is a protein that in humans is encoded by the MTA2 gene.

<span class="mw-page-title-main">STK3</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase 3 is an enzyme that in humans is encoded by the STK3 gene.

<span class="mw-page-title-main">CCHCR1</span> Protein-coding gene in the species Homo sapiens

Coiled-coil alpha-helical rod protein 1, also known as CCHCR1, is a protein which in humans is encoded by the CCHCR1 gene.

References

  1. 1 2 3 ENSG00000276072 GRCh38: Ensembl release 89: ENSG00000275700, ENSG00000276072 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000018697 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Lindfors K, Halttunen T, Huotari P, Nupponen N, Vihinen M, Visakorpi T, Mäki M, Kainulainen H (Sep 2000). "Identification of novel transcription factor-like gene from human intestinal cells". Biochemical and Biophysical Research Communications. 276 (2): 660–6. doi:10.1006/bbrc.2000.3480. PMID   11027528.
  6. 1 2 3 Fanciulli M, Bruno T, Di Padova M, De Angelis R, Iezzi S, Iacobini C, Floridi A, Passananti C (May 2000). "Identification of a novel partner of RNA polymerase II subunit 11, Che-1, which interacts with and affects the growth suppression function of Rb". FASEB Journal. 14 (7): 904–12. doi: 10.1096/fasebj.14.7.904 . PMID   10783144. S2CID   43175069.
  7. 1 2 "Entrez Gene: AATF apoptosis antagonizing transcription factor".
  8. Guo Q, Xie J (Feb 2004). "AATF inhibits aberrant production of amyloid beta peptide 1-42 by interacting directly with Par-4". The Journal of Biological Chemistry. 279 (6): 4596–603. doi: 10.1074/jbc.M309811200 . PMID   14627703.
  9. Bruno T, De Angelis R, De Nicola F, Barbato C, Di Padova M, Corbi N, Libri V, Benassi B, Mattei E, Chersi A, Soddu S, Floridi A, Passananti C, Fanciulli M (Nov 2002). "Che-1 affects cell growth by interfering with the recruitment of HDAC1 by Rb". Cancer Cell. 2 (5): 387–99. doi: 10.1016/s1535-6108(02)00182-4 . PMID   12450794.
  10. Di Padova M, Bruno T, De Nicola F, Iezzi S, D'Angelo C, Gallo R, Nicosia D, Corbi N, Biroccio A, Floridi A, Passananti C, Fanciulli M (Sep 2003). "Che-1 arrests human colon carcinoma cell proliferation by displacing HDAC1 from the p21WAF1/CIP1 promoter". The Journal of Biological Chemistry. 278 (38): 36496–504. doi: 10.1074/jbc.M306694200 . PMID   12847090.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.