In object-oriented programming, a destructor (sometimes abbreviated dtor [1] ) is a method which is invoked mechanically just before the memory of the object is released. [2] It can happen when its lifetime is bound to scope and the execution leaves the scope, when it is embedded in another object whose lifetime ends, or when it was allocated dynamically and is released explicitly. Its main purpose is to free the resources (memory allocations, open files or sockets, database connections, resource locks, etc.) which were acquired by the object during its life and/or deregister from other entities which may keep references to it. Use of destructors is needed for the process of Resource Acquisition Is Initialization (RAII).
With most kinds of automatic garbage collection algorithms, the releasing of memory may happen a long time after the object becomes unreachable, making destructors (called finalizers in this case) unsuitable for most purposes. In such languages, the freeing of resources is done either through a lexical construct (such as try..finally, Python's "with" or Java's "try-with-resources"), which is the equivalent to RAII, or explicitly by calling a function (equivalent to explicit deletion); in particular, many object-oriented languages use the Dispose pattern.
X
with a constructor X()
has a destructor ~X()
). [2] ~this()
(whereas constructors are declared with this()
).destructor
and can have user-defined names, but are mostly named Destroy
.dealloc
.DESTROY
; in the Moose object system extension, it is named DEMOLISH
.__destruct
. There were no destructors in prior versions of PHP. [4] __del__
methods called destructors by the Python 2 language guide, [5] but they are actually finalizers as acknowledged in Python 3. [6] drop
and is provided by the Drop
trait. [7] deinit
.The destructor has the same name as the class, but with a tilde (~) before it. [2] For example, a class called foo will have the destructor ~foo()
. Additionally, destructors have neither parameters nor return types. [2] As stated above, a destructor for an object is called whenever the object's lifetime ends. [2] If the object was created as an automatic variable, its lifetime ends and the destructor is called automatically when the object goes out of scope. Because C++ does not have garbage collection, if the object was created with a new
statement (dynamically on the heap), then its destructor is called when the delete
operator is applied to a pointer to the object. Usually that operation occurs within another destructor, typically the destructor of a smart pointer object.
In inheritance hierarchies, the declaration of a virtual destructor in the base class ensures that the destructors of derived classes are invoked properly when an object is deleted through a pointer-to-base-class. Objects that may be deleted in this way need to inherit a virtual destructor.
A destructor should never throw an exception. [8]
Non-class scalar types have what's called a pseudo-destructor which can be accessed by using typedef
or template arguments. This construct makes it possible to write code without having to know if a destructor exists for a given type.
intf(){inta=123;usingT=int;a.~T();returna;// undefined behavior}
In older versions of the standard, pseudo-destructors were specified to have no effect, however that was changed in a defect report to make them end the lifetime of the object they are called on. [9]
#include<cstring>#include<iostream>classFoo{public:Foo():data_(newchar[sizeof("Hello, World!")]){std::strcpy(data_,"Hello, World!");}Foo(constFoo&other)=delete;// disable copy constructionFoo&operator=(constFoo&other)=delete;// disable assignment~Foo(void){delete[]data_;}private:friendstd::ostream&operator<<(std::ostream&os,constFoo&foo){os<<foo.data_;returnos;}char*data_;};intmain(){Foofoo;std::cout<<foo<<std::endl;}
Objects which cannot be safely copied and/or assigned should be disabled from such semantics by declaring their corresponding functions as deleted within a public encapsulation level. A detailed description of this method can be found in Scott Meyers' popular book, Effective Modern C++ (Item 11: "Prefer deleted functions to private undefined ones." [10] ).
The GNU Compiler Collection's C compiler comes with 2 extensions that allow implementing destructors:
destructor
function attribute [11] allows defining global prioritized destructor functions: when main()
returns, these functions are called in priority order before the process terminates. See also: Hacking the art of exploitation. [12] Destructors in Xojo (REALbasic) can be in one of two forms. Each form uses a regular method declaration with a special name (with no parameters and no return value). The older form uses the same name as the Class with a ~ (tilde) prefix. The newer form uses the name Destructor
. The newer form is preferred because it makes refactoring the class easier.
Class Foobar // Old form Sub ~Foobar() End Sub // New form Sub Destructor() End Sub End Class
In computing, a namespace is a set of signs (names) that are used to identify and refer to objects of various kinds. A namespace ensures that all of a given set of objects have unique names so that they can be easily identified.
Java and C++ are two prominent object-oriented programming languages. By many language popularity metrics, the two languages have dominated object-oriented and high-performance software development for much of the 21st century, and are often directly compared and contrasted. Java's syntax was based on C/C++.
In object-oriented (OO) and functional programming, an immutable object is an object whose state cannot be modified after it is created. This is in contrast to a mutable object, which can be modified after it is created. In some cases, an object is considered immutable even if some internally used attributes change, but the object's state appears unchanging from an external point of view. For example, an object that uses memoization to cache the results of expensive computations could still be considered an immutable object.
A method in object-oriented programming (OOP) is a procedure associated with an object, and generally also a message. An object consists of state data and behavior; these compose an interface, which specifies how the object may be used. A method is a behavior of an object parametrized by a user.
In object-oriented programming (OOP), object lifetime is the period of time between an object's creation and its destruction. In some programming contexts, object lifetime coincides with the lifetime of a variable that represents the object. In other contexts – where the object is accessed by reference – object lifetime is not determined by the lifetime of a variable. For example, destruction of the variable may only destroy the reference; not the referenced object.
D, also known as dlang, is a multi-paradigm system programming language created by Walter Bright at Digital Mars and released in 2001. Andrei Alexandrescu joined the design and development effort in 2007. Though it originated as a re-engineering of C++, D is now a very different language. As it has developed, it has drawn inspiration from other high-level programming languages. Notably, it has been influenced by Java, Python, Ruby, C#, and Eiffel.
In computer science, a smart pointer is an abstract data type that simulates a pointer while providing added features, such as automatic memory management or bounds checking. Such features are intended to reduce bugs caused by the misuse of pointers, while retaining efficiency. Smart pointers typically keep track of the memory they point to, and may also be used to manage other resources, such as network connections and file handles. Smart pointers were first popularized in the programming language C++ during the first half of the 1990s as rebuttal to criticisms of C++'s lack of automatic garbage collection.
In computer programming, a default argument is an argument to a function that a programmer is not required to specify. In most programming languages, functions may take one or more arguments. Usually, each argument must be specified in full. Later languages allow the programmer to specify default arguments that always have a value, even if one is not specified when calling the function.
In object-oriented programming such as is often used in C++ and Object Pascal, a virtual function or virtual method is an inheritable and overridable function or method that is dispatched dynamically. Virtual functions are an important part of (runtime) polymorphism in object-oriented programming (OOP). They allow for the execution of target functions that were not precisely identified at compile time.
In computer programming, a function object is a construct allowing an object to be invoked or called as if it were an ordinary function, usually with the same syntax. In some languages, particularly C++, function objects are often called functors.
In the C++ programming language, a copy constructor is a special constructor for creating a new object as a copy of an existing object. Copy constructors are the standard way of copying objects in C++, as opposed to cloning, and have C++-specific nuances.
Resource acquisition is initialization (RAII) is a programming idiom used in several object-oriented, statically typed programming languages to describe a particular language behavior. In RAII, holding a resource is a class invariant, and is tied to object lifetime. Resource allocation is done during object creation, by the constructor, while resource deallocation (release) is done during object destruction, by the destructor. In other words, resource acquisition must succeed for initialization to succeed. Thus, the resource is guaranteed to be held between when initialization finishes and finalization starts, and to be held only when the object is alive. Thus, if there are no object leaks, there are no resource leaks.
In class-based, object-oriented programming, a constructor is a special type of function called to create an object. It prepares the new object for use, often accepting arguments that the constructor uses to set required member variables.
In the C++ programming language, a reference is a simple reference datatype that is less powerful but safer than the pointer type inherited from C. The name C++ reference may cause confusion, as in computer science a reference is a general concept datatype, with pointers and C++ references being specific reference datatype implementations. The definition of a reference in C++ is such that it does not need to exist. It can be implemented as a new name for an existing object.
In computer science, a finalizer or finalize method is a special method that performs finalization, generally some form of cleanup. A finalizer is executed during object destruction, prior to the object being deallocated, and is complementary to an initializer, which is executed during object creation, following allocation. Finalizers are strongly discouraged by some, due to difficulty in proper use and the complexity they add, and alternatives are suggested instead, mainly the dispose pattern.
C++/CLI is a variant of the C++ programming language, modified for Common Language Infrastructure. It has been part of Visual Studio 2005 and later, and provides interoperability with other .NET languages such as C#. Microsoft created C++/CLI to supersede Managed Extensions for C++. In December 2005, Ecma International published C++/CLI specifications as the ECMA-372 standard.
A class in C++ is a user-defined type or data structure declared with any of the keywords class
, struct
or union
that has data and functions as its members whose access is governed by the three access specifiers private, protected or public. By default access to members of a C++ class declared with the keyword class
is private. The private members are not accessible outside the class; they can be accessed only through member functions of the class. The public members form an interface to the class and are accessible outside the class.
C++11 is a version of a joint technical standard, ISO/IEC 14882, by the International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC), for the C++ programming language. C++11 replaced the prior version of the C++ standard, named C++03, and was later replaced by C++14. The name follows the tradition of naming language versions by the publication year of the specification, though it was formerly named C++0x because it was expected to be published before 2010.
In the C++ programming language, placement syntax allows programmers to explicitly specify the memory management of individual objects — i.e. their "placement" in memory. Normally, when an object is created dynamically, an allocation function is invoked in such a way that it will both allocate memory for the object, and initialize the object within the newly allocated memory. The placement syntax allows the programmer to supply additional arguments to the allocation function. A common use is to supply a pointer to a suitable region of storage where the object can be initialized, thus separating memory allocation from object construction.
A callable object, in computer programming, is any object that can be called like a function.