Dichroic glass is glass which can display multiple different colors depending on lighting conditions.
One dichroic material is a modern composite non-translucent glass that is produced by stacking layers of metal oxides which give the glass shifting colors depending on the angle of view, causing an array of colors to be displayed as an example of thin-film optics. The resulting glass is used for decorative purposes such as stained glass, jewelry and other forms of glass art. The commercial title of "dichroic" can also display three or more colors (trichroic) and even iridescence in some cases. The term dichroic is used more precisely when labelling interference filters for laboratory use.
Another dichroic glass material first appeared in a few pieces of Roman glass from the 4th century and consists of a translucent glass containing colloidal gold and silver particles dispersed in the glass matrix in certain proportions so that the glass has the property of displaying a particular transmitted color and a completely different reflected color, as certain wavelengths of light either pass through or are reflected. [1] In ancient dichroic glass, as seen in the most famous piece, the 4th-century Lycurgus cup in the British Museum, the glass has a green color when lit from in front in reflected light, and another, purple-ish red, when lit from inside or behind the cup so that the light passes through the glass. This is not due to alternating thin metal films but colloidal silver and gold particles dispersed throughout the glass, in an effect similar to that seen in gold ruby glass, though that has only one color whatever the lighting. [2] [3]
The 4th-century Lycurgus cup as it appears when back-lit and when front-lit, respectively |
Modern dichroic glass is available as a result of materials research carried out by NASA and its contractors, [4] who developed it for use in dichroic filters. However, color changing glass dates back to at least the 4th century AD, though only very few pieces, mostly fragments, survive. It was also made in the Renaissance in Venice and by imitators elsewhere; these pieces are also rare. [5]
Multiple ultra-thin layers of transparent oxides of such metals as titanium, chromium, aluminium, zirconium, or magnesium; or silica are vaporised by an electron beam in a vacuum chamber. The vapor then condenses on the surface of the glass in the form of a crystal structure. A protective layer of quartz crystal is sometimes added. [6] Other variants of such physical vapor deposition (PVD) coatings are also possible. The finished glass can have as many as 30 [6] to 50 layers of these materials, yet the thickness of the total coating is approximately 30 [6] to 35 millionths of an inch (about 760 to 890 nm). The coating that is created is very similar to a gemstone [ dubious – discuss ] and, by careful control of thickness, different colors may be obtained.[ citation needed ]
The total light that hits the dichroic layer equals the wavelengths reflected plus the wavelengths passing through the dichroic layer.
A plate of dichroic glass can be fused with other glass in multiple firings. Due to variations in the firing process, individual results can never be exactly predicted, so each piece of fused dichroic glass is unique. [7] Over 45 colours of dichroic coatings are available to be placed on any glass substrate. [6]
Dichroic glass is used in various dichroic optical filters to select narrow bands of spectral colors, for example in fluorescence microscopy, LCD projectors, or 3D movies.
Dichroic glass is now available to artists through dichroic coating manufacturers. Glass artists often refer to dichroic glass as "dichro". [8]
Images can be formed by removing the dichroic coating from parts of the glass, creating everything from abstract patterns to letters, animals, or faces. The standard method for precision removal of the coating involves a laser.[ citation needed ]
Dichroic glass is specifically designed to be hotworked but can also be used in its raw form. Sculpted glass elements that have been shaped by extreme heat and then fused together may also be coated with dichroic afterwards to make them reflect an array of colors.
The corporate headquarters of Amazon.com in Seattle, Washington, incorporates dichroic glass into the exterior of its high-rise building, reflecting light into various colors that depend on the time of day. [9]
The Museum at Prairiefire in Overland Park, Kansas, [10] which opened in May 2014, is devoted primarily to natural history. It borrows displays from larger museums and hosts at least two major traveling exhibits per year. Its striking glass exterior was designed to reference the intentional prairie fires [11] that were an integral part of farming life in Kansas. The glass is dichroic, which means that its color changes with the light of the day. The museum is itself a work of art. [12]
A mirror, also known as a looking glass, is an object that reflects an image. Light that bounces off a mirror will show an image of whatever is in front of it, when focused through the lens of the eye or a camera. Mirrors reverse the direction of the image in an equal yet opposite angle from which the light shines upon it. This allows the viewer to see themselves or objects behind them, or even objects that are at an angle from them but out of their field of view, such as around a corner. Natural mirrors have existed since prehistoric times, such as the surface of water, but people have been manufacturing mirrors out of a variety of materials for thousands of years, like stone, metals, and glass. In modern mirrors, metals like silver or aluminium are often used due to their high reflectivity, applied as a thin coating on glass because of its naturally smooth and very hard surface.
An interference filter, dichroic filter, or thin-film filter is an optical filter that reflects some wavelengths (colors) of light and transmits others, with almost no absorption for all wavelengths of interest. An interference filter may be high-pass, low-pass, bandpass, or band-rejection. They are used in scientific applications, as well as in architectural and theatrical lighting.
In optics, a dichroic material is either one which causes visible light to be split up into distinct beams of different wavelengths (colours), or one in which light rays having different polarizations are absorbed by different amounts.
The Autochrome Lumière was an early color photography process patented in 1903 by the Lumière brothers in France and first marketed in 1907. Autochrome was an additive color "mosaic screen plate" process. It was the principal color photography process in use before the advent of subtractive color film in the mid-1930s.
A color gel or color filter, also known as lighting gel or simply gel, is a transparent colored material that is used in theater, event production, photography, videography and cinematography to color light and for color correction. Modern gels are thin sheets of polycarbonate, polyester or other heat-resistant plastics, placed in front of a lighting fixture in the path of the beam.
An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides. Not all optical prisms are geometric prisms, and not all geometric prisms would count as an optical prism. Prisms can be made from any material that is transparent to the wavelengths for which they are designed. Typical materials include glass, acrylic and fluorite.
Thin-film optics is the branch of optics that deals with very thin structured layers of different materials. In order to exhibit thin-film optics, the thickness of the layers of material must be similar to the coherence length; for visible light it is most often observed between 200 and 1000 nm of thickness. Layers at this scale can have remarkable reflective properties due to light wave interference and the difference in refractive index between the layers, the air, and the substrate. These effects alter the way the optic reflects and transmits light. This effect, known as thin-film interference, is observable in soap bubbles and oil slicks.
Color photography is photography that uses media capable of capturing and reproducing colors. By contrast, black-and-white or gray-monochrome photography records only a single channel of luminance (brightness) and uses media capable only of showing shades of gray.
A dichroic prism is a prism that splits light into two beams of differing wavelengths (colour). A trichroic prism assembly combines two dichroic prisms to split an image into 3 colours, typically as red, green and blue of the RGB colour model. They are usually constructed of one or more glass prisms with dichroic optical coatings that selectively reflect or transmit light depending on the light's wavelength. That is, certain surfaces within the prism act as dichroic filters. These are used as beam splitters in many optical instruments.
An optical coating is one or more thin layers of material deposited on an optical component such as a lens, prism or mirror, which alters the way in which the optic reflects and transmits light. These coatings have become a key technology in the field of optics. One type of optical coating is an anti-reflective coating, which reduces unwanted reflections from surfaces, and is commonly used on spectacle and camera lenses. Another type is the high-reflector coating, which can be used to produce mirrors that reflect greater than 99.99% of the light that falls on them. More complex optical coatings exhibit high reflection over some range of wavelengths, and anti-reflection over another range, allowing the production of dichroic thin-film filters.
An optical filter is a device that selectively transmits light of different wavelengths, usually implemented as a glass plane or plastic device in the optical path, which are either dyed in the bulk or have interference coatings. The optical properties of filters are completely described by their frequency response, which specifies how the magnitude and phase of each frequency component of an incoming signal is modified by the filter.
An antireflective, antiglare or anti-reflection (AR) coating is a type of optical coating applied to the surface of lenses, other optical elements, and photovoltaic cells to reduce reflection. In typical imaging systems, this improves the efficiency since less light is lost due to reflection. In complex systems such as cameras, binoculars, telescopes, and microscopes the reduction in reflections also improves the contrast of the image by elimination of stray light. This is especially important in planetary astronomy. In other applications, the primary benefit is the elimination of the reflection itself, such as a coating on eyeglass lenses that makes the eyes of the wearer more visible to others, or a coating to reduce the glint from a covert viewer's binoculars or telescopic sight.
A dielectric mirror, also known as a Bragg mirror, is a type of mirror composed of multiple thin layers of dielectric material, typically deposited on a substrate of glass or some other optical material. By careful choice of the type and thickness of the dielectric layers, one can design an optical coating with specified reflectivity at different wavelengths of light. Dielectric mirrors are also used to produce ultra-high reflectivity mirrors: values of 99.999% or better over a narrow range of wavelengths can be produced using special techniques. Alternatively, they can be made to reflect a broad spectrum of light, such as the entire visible range or the spectrum of the Ti-sapphire laser.
Wood's glass is an optical filter glass invented in 1903 by American physicist Robert Williams Wood (1868–1955), which allows ultraviolet and infrared light to pass through, while blocking most visible light.
In digital imaging, a color filter array (CFA), or color filter mosaic (CFM), is a mosaic of tiny color filters placed over the pixel sensors of an image sensor to capture color information.
The Lycurgus Cup is a Roman glass 4th-century cage cup made of a dichroic glass, which shows a different colour depending on whether or not light is passing through it: red when lit from behind and green when lit from in front. It is the only complete Roman glass object made from this type of glass, and the one exhibiting the most impressive change in colour; it has been described as "the most spectacular glass of the period, fittingly decorated, which we know to have existed".
Glass coloring and color marking may be obtained in several ways.
A quantum dot display is a display device that uses quantum dots (QD), semiconductor nanocrystals which can produce pure monochromatic red, green, and blue light. Photo-emissive quantum dot particles are used in LCD backlights or display color filters. Quantum dots are excited by the blue light from the display panel to emit pure basic colors, which reduces light losses and color crosstalk in color filters, improving display brightness and color gamut. Light travels through QD layer film and traditional RGB filters made from color pigments, or through QD filters with red/green QD color converters and blue passthrough. Although the QD color filter technology is primarily used in LED-backlit LCDs, it is applicable to other display technologies which use color filters, such as blue/UV active-matrix organic light-emitting diode (AMOLED) or QNED/MicroLED display panels. LED-backlit LCDs are the main application of photo-emissive quantum dots, though blue organic light-emitting diode (OLED) panels with QD color filters are now coming to market.
Thin-film interference is a natural phenomenon in which light waves reflected by the upper and lower boundaries of a thin film interfere with one another, increasing reflection at some wavelengths and decreasing it at others. When white light is incident on a thin film, this effect produces colorful reflections.
Picture framing glass usually refers to flat glass or acrylic ("plexi") used for framing artwork and for presenting art objects in a display box.