Diffusion current

Last updated

Diffusion current is a current in a semiconductor caused by the diffusion of charge carriers (electrons and/or electron holes). This is the current which is due to the transport of charges occurring because of non-uniform concentration of charged particles in a semiconductor. The drift current, by contrast, is due to the motion of charge carriers due to the force exerted on them by an electric field. Diffusion current can be in the same or opposite direction of a drift current. The diffusion current and drift current together are described by the drift–diffusion equation. [1]

Contents

It is necessary to consider the part of diffusion current when describing many semiconductor devices. For example, the current near the depletion region of a p–n junction is dominated by the diffusion current. Inside the depletion region, both diffusion current and drift current are present. At equilibrium in a p–n junction, the forward diffusion current in the depletion region is balanced with a reverse drift current, so that the net current is zero.

The diffusion constant for a doped material can be determined with the Haynes–Shockley experiment. Alternatively, if the carrier mobility is known, the diffusion coefficient may be determined from the Einstein relation on electrical mobility.

Overview

Diffusion current versus drift current

The following table compares the two types of current:

Diffusion currentDrift current
Diffusion current = the movement caused by variation in the carrier concentration.Drift current = the movement caused by electric fields.
Direction of the diffusion current depends on the slope of the carrier concentration.Direction of the drift current is always in the direction of the electric field.
Obeys Fick's law: Obeys Ohm's law:

Carrier actions

No external electric field across the semiconductor is required for a diffusion current to take place. This is because diffusion takes place due to the change in concentration of the carrier particles and not the concentrations themselves. The carrier particles, namely the holes and electrons of a semiconductor, move from a place of higher concentration to a place of lower concentration. Hence, due to the flow of holes and electrons there is a current. This current is called the diffusion current. The drift current and the diffusion current make up the total current in the conductor. The change in the concentration of the carrier particles develops a gradient. Due to this gradient, an electric field is produced in the semiconductor.

Derivation

In a region where n and p vary with distance, a diffusion current is superimposed on that due to conductivity. This diffusion current is governed by Fick's law:

where:

F is flux.
De is the diffusion coefficient or diffusivity
is the concentration gradient of electrons
there is a minus sign because the direction of diffusion is opposite to that of the concentration gradient

The diffusion coefficient for a charge carrier is related to its mobility by the Einstein relation:

where:

kB is the Boltzmann constant
T is the absolute temperature
e is the electrical charge of an electron

Now let's focus on the diffusive current in one-dimension along the x-axis:

The electron current density Je is related to flux, F, by:

Thus

Similarly for holes:

Notice that for electrons the diffusive current is in the same direction as the electron density gradient because the minus sign from the negative charge and Fick's law cancel each other out. However, holes have positive charges and therefore the minus sign from Fick's law is carried over.

Superimpose the diffusive current on the drift current to get

for electrons

and

for holes

Consider electrons in a constant electric field E. Electrons will flow (i.e. there is a drift current) until the density gradient builds up enough for the diffusion current to exactly balance the drift current. So at equilibrium there is no net current flow:


Example

To derive the diffusion current in a semiconductor diode, the depletion layer must be large compared to the mean free path. One begins with the equation for the net current density J in a semiconductor diode,

where D is the diffusion coefficient for the electron in the considered medium, n is the number of electrons per unit volume (i.e. number density), q is the magnitude of charge of an electron, μ is electron mobility in the medium, and E = −dΦ/dx (Φ potential difference) is the electric field as the potential gradient of the electric potential. According to the Einstein relation on electrical mobility and . Thus, substituting E for the potential gradient in the above equation ( 1 ) and multiplying both sides with exp(−Φ/Vt), ( 1 ) becomes:

Integrating equation ( 2 ) over the depletion region gives

which can be written as

where

The denominator in equation ( 3 ) can be solved by using the following equation:

Therefore, Φ* can be written as:

Since the xxd, the term (xdx/2) ≈ xd, using this approximation equation ( 3 ) is solved as follows:

,

since (ΦiVa) > Vt. One obtains the equation of current caused due to diffusion:

From equation ( 5 ), one can observe that the current depends exponentially on the input voltage Va, also the barrier height ΦB. From equation ( 5 ), Va can be written as the function of electric field intensity, which is as follows:

Substituting equation ( 6 ) in equation ( 5 ) gives:

From equation ( 7 ), one can observe that when a zero voltage is applied to the semi-conductor diode, the drift current totally balances the diffusion current. Hence, the net current in a semiconductor diode at zero potential is always zero.

As carriers are generated (green:electrons and purple:holes) due to light shining at the center of an intrinsic semiconductor, they diffuse towards two ends. Electrons have higher diffusion constant than holes leading to fewer excess electrons at the center as compared to holes. Diffusion center.gif
As carriers are generated (green:electrons and purple:holes) due to light shining at the center of an intrinsic semiconductor, they diffuse towards two ends. Electrons have higher diffusion constant than holes leading to fewer excess electrons at the center as compared to holes.

The equation above can be applied to model semiconductor devices. When the density of electrons is not in equilibrium, diffusion of electrons will occur. For example, when a bias is applied to two ends of a chunk of semiconductor, or a light is shining in one place (see right figure), electrons will diffuse from high density regions (center) to low density regions (two ends), forming a gradient of electron density. This process generates diffusion current.

See also

Related Research Articles

<span class="mw-page-title-main">Fick's laws of diffusion</span> Mathematical descriptions of molecular diffusion

Fick's laws of diffusion describe diffusion and were first posited by Adolf Fick in 1855 on the basis of largely experimental results. They can be used to solve for the diffusion coefficient, D. Fick's first law can be used to derive his second law which in turn is identical to the diffusion equation.

Space charge is an interpretation of a collection of electric charges in which excess electric charge is treated as a continuum of charge distributed over a region of space rather than distinct point-like charges. This model typically applies when charge carriers have been emitted from some region of a solid—the cloud of emitted carriers can form a space charge region if they are sufficiently spread out, or the charged atoms or molecules left behind in the solid can form a space charge region.

A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.

The laser diode rate equations model the electrical and optical performance of a laser diode. This system of ordinary differential equations relates the number or density of photons and charge carriers (electrons) in the device to the injection current and to device and material parameters such as carrier lifetime, photon lifetime, and the optical gain.

p–n junction Semiconductor–semiconductor junction

A p–n junction is a combination of two types of semiconductor materials, p-type and n-type, in a single crystal. The "n" (negative) side contains freely-moving electrons, while the "p" (positive) side contains freely-moving electron holes. Connecting the two materials causes creation of a depletion region near the boundary, as the free electrons fill the available holes, which in turn allows electric current to pass through the junction only in one direction.

In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pushed or pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility.

<span class="mw-page-title-main">Seebeck coefficient</span> Measure of voltage induced by change of temperature

The Seebeck coefficient of a material is a measure of the magnitude of an induced thermoelectric voltage in response to a temperature difference across that material, as induced by the Seebeck effect. The SI unit of the Seebeck coefficient is volts per kelvin (V/K), although it is more often given in microvolts per kelvin (μV/K).

The saturation current, more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage.

In semiconductor physics, the depletion region, also called depletion layer, depletion zone, junction region, space charge region, or space charge layer, is an insulating region within a conductive, doped semiconductor material where the mobile charge carriers have diffused away, or forced away by an electric field. The only elements left in the depletion region are ionized donor or acceptor impurities. This region of uncovered positive and negative ions is called the depletion region due to the depletion of carriers in this region, leaving none to carry a current. Understanding the depletion region is key to explaining modern semiconductor electronics: diodes, bipolar junction transistors, field-effect transistors, and variable capacitance diodes all rely on depletion region phenomena.

In physics, the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on Brownian motion. The more general form of the equation in the classical case is

<span class="mw-page-title-main">Shockley diode equation</span> Electrical engineering equation

The Shockley diode equation, or the diode law, named after transistor co-inventor William Shockley of Bell Labs, models the exponential current–voltage (I–V) relationship of semiconductor diodes in moderate constant current forward bias or reverse bias:

In semiconductor physics, the Haynes–Shockley experiment was an experiment that demonstrated that diffusion of minority carriers in a semiconductor could result in a current. The experiment was reported in a short paper by Haynes and Shockley in 1948, with a more detailed version published by Shockley, Pearson, and Haynes in 1949. The experiment can be used to measure carrier mobility, carrier lifetime, and diffusion coefficient.

<span class="mw-page-title-main">Eddy diffusion</span> Mixing of fluids due to eddy currents

In fluid dynamics, eddy diffusion, eddy dispersion, or turbulent diffusion is a process by which fluid substances mix together due to eddy motion. These eddies can vary widely in size, from subtropical ocean gyres down to the small Kolmogorov microscales, and occur as a result of turbulence. The theory of eddy diffusion was first developed by Sir Geoffrey Ingram Taylor.

In condensed matter physics and electrochemistry, drift current is the electric current, or movement of charge carriers, which is due to the applied electric field, often stated as the electromotive force over a given distance. When an electric field is applied across a semiconductor material, a current is produced due to the flow of charge carriers.

The convection–diffusion equation is a parabolic partial differential equation that combines the diffusion and convection (advection) equations. It describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, or (generic) scalar transport equation.

<span class="mw-page-title-main">Diffusion</span> Transport of dissolved species from the highest to the lowest concentration region

Diffusion is the net movement of anything generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, as in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics, probability theory, information theory, neural networks, finance, and marketing.

<span class="mw-page-title-main">Theory of solar cells</span>

The theory of solar cells explains the process by which light energy in photons is converted into electric current when the photons strike a suitable semiconductor device. The theoretical studies are of practical use because they predict the fundamental limits of a solar cell, and give guidance on the phenomena that contribute to losses and solar cell efficiency.

A p–n diode is a type of semiconductor diode based upon the p–n junction. The diode conducts current in only one direction, and it is made by joining a p-type semiconducting layer to an n-type semiconducting layer. Semiconductor diodes have multiple uses including rectification of alternating current to direct current, in the detection of radio signals, and emitting and detecting light.

Optoelectronic reciprocity relations relate properties of a diode under illumination to the photon emission of the same diode under applied voltage. The relations are useful for interpretation of luminescence based measurements of solar cells and modules and for the analysis of recombination losses in solar cells.

In solid-state physics, band bending refers to the process in which the electronic band structure in a material curves up or down near a junction or interface. It does not involve any physical (spatial) bending. When the electrochemical potential of the free charge carriers around an interface of a semiconductor is dissimilar, charge carriers are transferred between the two materials until an equilibrium state is reached whereby the potential difference vanishes. The band bending concept was first developed in 1938 when Mott, Davidov and Schottky all published theories of the rectifying effect of metal-semiconductor contacts. The use of semiconductor junctions sparked the computer revolution in the second half of the 20th century. Devices such as the diode, the transistor, the photocell and many more play crucial roles in technology.

References

  1. McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN   0-07-051400-3